| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eigvalfval |  |-  ( T : ~H --> ~H -> ( eigval ` T ) = ( x e. ( eigvec ` T ) |-> ( ( ( T ` x ) .ih x ) / ( ( normh ` x ) ^ 2 ) ) ) ) | 
						
							| 2 | 1 | fveq1d |  |-  ( T : ~H --> ~H -> ( ( eigval ` T ) ` A ) = ( ( x e. ( eigvec ` T ) |-> ( ( ( T ` x ) .ih x ) / ( ( normh ` x ) ^ 2 ) ) ) ` A ) ) | 
						
							| 3 |  | fveq2 |  |-  ( x = A -> ( T ` x ) = ( T ` A ) ) | 
						
							| 4 |  | id |  |-  ( x = A -> x = A ) | 
						
							| 5 | 3 4 | oveq12d |  |-  ( x = A -> ( ( T ` x ) .ih x ) = ( ( T ` A ) .ih A ) ) | 
						
							| 6 |  | fveq2 |  |-  ( x = A -> ( normh ` x ) = ( normh ` A ) ) | 
						
							| 7 | 6 | oveq1d |  |-  ( x = A -> ( ( normh ` x ) ^ 2 ) = ( ( normh ` A ) ^ 2 ) ) | 
						
							| 8 | 5 7 | oveq12d |  |-  ( x = A -> ( ( ( T ` x ) .ih x ) / ( ( normh ` x ) ^ 2 ) ) = ( ( ( T ` A ) .ih A ) / ( ( normh ` A ) ^ 2 ) ) ) | 
						
							| 9 |  | eqid |  |-  ( x e. ( eigvec ` T ) |-> ( ( ( T ` x ) .ih x ) / ( ( normh ` x ) ^ 2 ) ) ) = ( x e. ( eigvec ` T ) |-> ( ( ( T ` x ) .ih x ) / ( ( normh ` x ) ^ 2 ) ) ) | 
						
							| 10 |  | ovex |  |-  ( ( ( T ` A ) .ih A ) / ( ( normh ` A ) ^ 2 ) ) e. _V | 
						
							| 11 | 8 9 10 | fvmpt |  |-  ( A e. ( eigvec ` T ) -> ( ( x e. ( eigvec ` T ) |-> ( ( ( T ` x ) .ih x ) / ( ( normh ` x ) ^ 2 ) ) ) ` A ) = ( ( ( T ` A ) .ih A ) / ( ( normh ` A ) ^ 2 ) ) ) | 
						
							| 12 | 2 11 | sylan9eq |  |-  ( ( T : ~H --> ~H /\ A e. ( eigvec ` T ) ) -> ( ( eigval ` T ) ` A ) = ( ( ( T ` A ) .ih A ) / ( ( normh ` A ) ^ 2 ) ) ) |