Step |
Hyp |
Ref |
Expression |
1 |
|
eigvalval |
|- ( ( T : ~H --> ~H /\ A e. ( eigvec ` T ) ) -> ( ( eigval ` T ) ` A ) = ( ( ( T ` A ) .ih A ) / ( ( normh ` A ) ^ 2 ) ) ) |
2 |
1
|
oveq1d |
|- ( ( T : ~H --> ~H /\ A e. ( eigvec ` T ) ) -> ( ( ( eigval ` T ) ` A ) .h A ) = ( ( ( ( T ` A ) .ih A ) / ( ( normh ` A ) ^ 2 ) ) .h A ) ) |
3 |
|
eleigvec2 |
|- ( T : ~H --> ~H -> ( A e. ( eigvec ` T ) <-> ( A e. ~H /\ A =/= 0h /\ ( T ` A ) e. ( span ` { A } ) ) ) ) |
4 |
3
|
biimpa |
|- ( ( T : ~H --> ~H /\ A e. ( eigvec ` T ) ) -> ( A e. ~H /\ A =/= 0h /\ ( T ` A ) e. ( span ` { A } ) ) ) |
5 |
|
normcan |
|- ( ( A e. ~H /\ A =/= 0h /\ ( T ` A ) e. ( span ` { A } ) ) -> ( ( ( ( T ` A ) .ih A ) / ( ( normh ` A ) ^ 2 ) ) .h A ) = ( T ` A ) ) |
6 |
4 5
|
syl |
|- ( ( T : ~H --> ~H /\ A e. ( eigvec ` T ) ) -> ( ( ( ( T ` A ) .ih A ) / ( ( normh ` A ) ^ 2 ) ) .h A ) = ( T ` A ) ) |
7 |
2 6
|
eqtr2d |
|- ( ( T : ~H --> ~H /\ A e. ( eigvec ` T ) ) -> ( T ` A ) = ( ( ( eigval ` T ) ` A ) .h A ) ) |
8 |
4
|
simp2d |
|- ( ( T : ~H --> ~H /\ A e. ( eigvec ` T ) ) -> A =/= 0h ) |
9 |
7 8
|
jca |
|- ( ( T : ~H --> ~H /\ A e. ( eigvec ` T ) ) -> ( ( T ` A ) = ( ( ( eigval ` T ) ` A ) .h A ) /\ A =/= 0h ) ) |