Metamath Proof Explorer


Theorem eirr

Description: _e is irrational. (Contributed by Paul Chapman, 9-Feb-2008) (Proof shortened by Mario Carneiro, 29-Apr-2014)

Ref Expression
Assertion eirr
|- _e e/ QQ

Proof

Step Hyp Ref Expression
1 eqid
 |-  ( n e. NN0 |-> ( 1 / ( ! ` n ) ) ) = ( n e. NN0 |-> ( 1 / ( ! ` n ) ) )
2 simpll
 |-  ( ( ( p e. ZZ /\ q e. NN ) /\ _e = ( p / q ) ) -> p e. ZZ )
3 simplr
 |-  ( ( ( p e. ZZ /\ q e. NN ) /\ _e = ( p / q ) ) -> q e. NN )
4 simpr
 |-  ( ( ( p e. ZZ /\ q e. NN ) /\ _e = ( p / q ) ) -> _e = ( p / q ) )
5 1 2 3 4 eirrlem
 |-  -. ( ( p e. ZZ /\ q e. NN ) /\ _e = ( p / q ) )
6 5 imnani
 |-  ( ( p e. ZZ /\ q e. NN ) -> -. _e = ( p / q ) )
7 6 nrexdv
 |-  ( p e. ZZ -> -. E. q e. NN _e = ( p / q ) )
8 7 nrex
 |-  -. E. p e. ZZ E. q e. NN _e = ( p / q )
9 elq
 |-  ( _e e. QQ <-> E. p e. ZZ E. q e. NN _e = ( p / q ) )
10 8 9 mtbir
 |-  -. _e e. QQ
11 10 nelir
 |-  _e e/ QQ