| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eirr.1 |
|- F = ( n e. NN0 |-> ( 1 / ( ! ` n ) ) ) |
| 2 |
|
eirr.2 |
|- ( ph -> P e. ZZ ) |
| 3 |
|
eirr.3 |
|- ( ph -> Q e. NN ) |
| 4 |
|
eirr.4 |
|- ( ph -> _e = ( P / Q ) ) |
| 5 |
|
fzfid |
|- ( ph -> ( 0 ... Q ) e. Fin ) |
| 6 |
|
elfznn0 |
|- ( k e. ( 0 ... Q ) -> k e. NN0 ) |
| 7 |
|
nn0z |
|- ( n e. NN0 -> n e. ZZ ) |
| 8 |
|
1exp |
|- ( n e. ZZ -> ( 1 ^ n ) = 1 ) |
| 9 |
7 8
|
syl |
|- ( n e. NN0 -> ( 1 ^ n ) = 1 ) |
| 10 |
9
|
oveq1d |
|- ( n e. NN0 -> ( ( 1 ^ n ) / ( ! ` n ) ) = ( 1 / ( ! ` n ) ) ) |
| 11 |
10
|
mpteq2ia |
|- ( n e. NN0 |-> ( ( 1 ^ n ) / ( ! ` n ) ) ) = ( n e. NN0 |-> ( 1 / ( ! ` n ) ) ) |
| 12 |
1 11
|
eqtr4i |
|- F = ( n e. NN0 |-> ( ( 1 ^ n ) / ( ! ` n ) ) ) |
| 13 |
12
|
eftval |
|- ( k e. NN0 -> ( F ` k ) = ( ( 1 ^ k ) / ( ! ` k ) ) ) |
| 14 |
13
|
adantl |
|- ( ( ph /\ k e. NN0 ) -> ( F ` k ) = ( ( 1 ^ k ) / ( ! ` k ) ) ) |
| 15 |
|
ax-1cn |
|- 1 e. CC |
| 16 |
15
|
a1i |
|- ( ph -> 1 e. CC ) |
| 17 |
|
eftcl |
|- ( ( 1 e. CC /\ k e. NN0 ) -> ( ( 1 ^ k ) / ( ! ` k ) ) e. CC ) |
| 18 |
16 17
|
sylan |
|- ( ( ph /\ k e. NN0 ) -> ( ( 1 ^ k ) / ( ! ` k ) ) e. CC ) |
| 19 |
14 18
|
eqeltrd |
|- ( ( ph /\ k e. NN0 ) -> ( F ` k ) e. CC ) |
| 20 |
6 19
|
sylan2 |
|- ( ( ph /\ k e. ( 0 ... Q ) ) -> ( F ` k ) e. CC ) |
| 21 |
5 20
|
fsumcl |
|- ( ph -> sum_ k e. ( 0 ... Q ) ( F ` k ) e. CC ) |
| 22 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 23 |
|
eqid |
|- ( ZZ>= ` ( Q + 1 ) ) = ( ZZ>= ` ( Q + 1 ) ) |
| 24 |
3
|
peano2nnd |
|- ( ph -> ( Q + 1 ) e. NN ) |
| 25 |
24
|
nnnn0d |
|- ( ph -> ( Q + 1 ) e. NN0 ) |
| 26 |
|
eqidd |
|- ( ( ph /\ k e. NN0 ) -> ( F ` k ) = ( F ` k ) ) |
| 27 |
|
fveq2 |
|- ( n = k -> ( ! ` n ) = ( ! ` k ) ) |
| 28 |
27
|
oveq2d |
|- ( n = k -> ( 1 / ( ! ` n ) ) = ( 1 / ( ! ` k ) ) ) |
| 29 |
|
ovex |
|- ( 1 / ( ! ` k ) ) e. _V |
| 30 |
28 1 29
|
fvmpt |
|- ( k e. NN0 -> ( F ` k ) = ( 1 / ( ! ` k ) ) ) |
| 31 |
30
|
adantl |
|- ( ( ph /\ k e. NN0 ) -> ( F ` k ) = ( 1 / ( ! ` k ) ) ) |
| 32 |
|
faccl |
|- ( k e. NN0 -> ( ! ` k ) e. NN ) |
| 33 |
32
|
adantl |
|- ( ( ph /\ k e. NN0 ) -> ( ! ` k ) e. NN ) |
| 34 |
33
|
nnrpd |
|- ( ( ph /\ k e. NN0 ) -> ( ! ` k ) e. RR+ ) |
| 35 |
34
|
rpreccld |
|- ( ( ph /\ k e. NN0 ) -> ( 1 / ( ! ` k ) ) e. RR+ ) |
| 36 |
31 35
|
eqeltrd |
|- ( ( ph /\ k e. NN0 ) -> ( F ` k ) e. RR+ ) |
| 37 |
12
|
efcllem |
|- ( 1 e. CC -> seq 0 ( + , F ) e. dom ~~> ) |
| 38 |
16 37
|
syl |
|- ( ph -> seq 0 ( + , F ) e. dom ~~> ) |
| 39 |
22 23 25 26 36 38
|
isumrpcl |
|- ( ph -> sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) e. RR+ ) |
| 40 |
39
|
rpred |
|- ( ph -> sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) e. RR ) |
| 41 |
40
|
recnd |
|- ( ph -> sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) e. CC ) |
| 42 |
|
esum |
|- _e = sum_ k e. NN0 ( 1 / ( ! ` k ) ) |
| 43 |
30
|
sumeq2i |
|- sum_ k e. NN0 ( F ` k ) = sum_ k e. NN0 ( 1 / ( ! ` k ) ) |
| 44 |
42 43
|
eqtr4i |
|- _e = sum_ k e. NN0 ( F ` k ) |
| 45 |
22 23 25 26 19 38
|
isumsplit |
|- ( ph -> sum_ k e. NN0 ( F ` k ) = ( sum_ k e. ( 0 ... ( ( Q + 1 ) - 1 ) ) ( F ` k ) + sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) ) |
| 46 |
44 45
|
eqtrid |
|- ( ph -> _e = ( sum_ k e. ( 0 ... ( ( Q + 1 ) - 1 ) ) ( F ` k ) + sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) ) |
| 47 |
3
|
nncnd |
|- ( ph -> Q e. CC ) |
| 48 |
|
pncan |
|- ( ( Q e. CC /\ 1 e. CC ) -> ( ( Q + 1 ) - 1 ) = Q ) |
| 49 |
47 15 48
|
sylancl |
|- ( ph -> ( ( Q + 1 ) - 1 ) = Q ) |
| 50 |
49
|
oveq2d |
|- ( ph -> ( 0 ... ( ( Q + 1 ) - 1 ) ) = ( 0 ... Q ) ) |
| 51 |
50
|
sumeq1d |
|- ( ph -> sum_ k e. ( 0 ... ( ( Q + 1 ) - 1 ) ) ( F ` k ) = sum_ k e. ( 0 ... Q ) ( F ` k ) ) |
| 52 |
51
|
oveq1d |
|- ( ph -> ( sum_ k e. ( 0 ... ( ( Q + 1 ) - 1 ) ) ( F ` k ) + sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) = ( sum_ k e. ( 0 ... Q ) ( F ` k ) + sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) ) |
| 53 |
46 52
|
eqtrd |
|- ( ph -> _e = ( sum_ k e. ( 0 ... Q ) ( F ` k ) + sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) ) |
| 54 |
21 41 53
|
mvrladdd |
|- ( ph -> ( _e - sum_ k e. ( 0 ... Q ) ( F ` k ) ) = sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) |
| 55 |
54
|
oveq2d |
|- ( ph -> ( ( ! ` Q ) x. ( _e - sum_ k e. ( 0 ... Q ) ( F ` k ) ) ) = ( ( ! ` Q ) x. sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) ) |
| 56 |
3
|
nnnn0d |
|- ( ph -> Q e. NN0 ) |
| 57 |
56
|
faccld |
|- ( ph -> ( ! ` Q ) e. NN ) |
| 58 |
57
|
nncnd |
|- ( ph -> ( ! ` Q ) e. CC ) |
| 59 |
|
ere |
|- _e e. RR |
| 60 |
59
|
recni |
|- _e e. CC |
| 61 |
60
|
a1i |
|- ( ph -> _e e. CC ) |
| 62 |
58 61 21
|
subdid |
|- ( ph -> ( ( ! ` Q ) x. ( _e - sum_ k e. ( 0 ... Q ) ( F ` k ) ) ) = ( ( ( ! ` Q ) x. _e ) - ( ( ! ` Q ) x. sum_ k e. ( 0 ... Q ) ( F ` k ) ) ) ) |
| 63 |
55 62
|
eqtr3d |
|- ( ph -> ( ( ! ` Q ) x. sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) = ( ( ( ! ` Q ) x. _e ) - ( ( ! ` Q ) x. sum_ k e. ( 0 ... Q ) ( F ` k ) ) ) ) |
| 64 |
4
|
oveq2d |
|- ( ph -> ( ( ! ` Q ) x. _e ) = ( ( ! ` Q ) x. ( P / Q ) ) ) |
| 65 |
2
|
zcnd |
|- ( ph -> P e. CC ) |
| 66 |
3
|
nnne0d |
|- ( ph -> Q =/= 0 ) |
| 67 |
58 65 47 66
|
div12d |
|- ( ph -> ( ( ! ` Q ) x. ( P / Q ) ) = ( P x. ( ( ! ` Q ) / Q ) ) ) |
| 68 |
64 67
|
eqtrd |
|- ( ph -> ( ( ! ` Q ) x. _e ) = ( P x. ( ( ! ` Q ) / Q ) ) ) |
| 69 |
3
|
nnred |
|- ( ph -> Q e. RR ) |
| 70 |
69
|
leidd |
|- ( ph -> Q <_ Q ) |
| 71 |
|
facdiv |
|- ( ( Q e. NN0 /\ Q e. NN /\ Q <_ Q ) -> ( ( ! ` Q ) / Q ) e. NN ) |
| 72 |
56 3 70 71
|
syl3anc |
|- ( ph -> ( ( ! ` Q ) / Q ) e. NN ) |
| 73 |
72
|
nnzd |
|- ( ph -> ( ( ! ` Q ) / Q ) e. ZZ ) |
| 74 |
2 73
|
zmulcld |
|- ( ph -> ( P x. ( ( ! ` Q ) / Q ) ) e. ZZ ) |
| 75 |
68 74
|
eqeltrd |
|- ( ph -> ( ( ! ` Q ) x. _e ) e. ZZ ) |
| 76 |
5 58 20
|
fsummulc2 |
|- ( ph -> ( ( ! ` Q ) x. sum_ k e. ( 0 ... Q ) ( F ` k ) ) = sum_ k e. ( 0 ... Q ) ( ( ! ` Q ) x. ( F ` k ) ) ) |
| 77 |
6
|
adantl |
|- ( ( ph /\ k e. ( 0 ... Q ) ) -> k e. NN0 ) |
| 78 |
77 30
|
syl |
|- ( ( ph /\ k e. ( 0 ... Q ) ) -> ( F ` k ) = ( 1 / ( ! ` k ) ) ) |
| 79 |
78
|
oveq2d |
|- ( ( ph /\ k e. ( 0 ... Q ) ) -> ( ( ! ` Q ) x. ( F ` k ) ) = ( ( ! ` Q ) x. ( 1 / ( ! ` k ) ) ) ) |
| 80 |
58
|
adantr |
|- ( ( ph /\ k e. ( 0 ... Q ) ) -> ( ! ` Q ) e. CC ) |
| 81 |
6 33
|
sylan2 |
|- ( ( ph /\ k e. ( 0 ... Q ) ) -> ( ! ` k ) e. NN ) |
| 82 |
81
|
nncnd |
|- ( ( ph /\ k e. ( 0 ... Q ) ) -> ( ! ` k ) e. CC ) |
| 83 |
|
facne0 |
|- ( k e. NN0 -> ( ! ` k ) =/= 0 ) |
| 84 |
77 83
|
syl |
|- ( ( ph /\ k e. ( 0 ... Q ) ) -> ( ! ` k ) =/= 0 ) |
| 85 |
80 82 84
|
divrecd |
|- ( ( ph /\ k e. ( 0 ... Q ) ) -> ( ( ! ` Q ) / ( ! ` k ) ) = ( ( ! ` Q ) x. ( 1 / ( ! ` k ) ) ) ) |
| 86 |
79 85
|
eqtr4d |
|- ( ( ph /\ k e. ( 0 ... Q ) ) -> ( ( ! ` Q ) x. ( F ` k ) ) = ( ( ! ` Q ) / ( ! ` k ) ) ) |
| 87 |
|
permnn |
|- ( k e. ( 0 ... Q ) -> ( ( ! ` Q ) / ( ! ` k ) ) e. NN ) |
| 88 |
87
|
adantl |
|- ( ( ph /\ k e. ( 0 ... Q ) ) -> ( ( ! ` Q ) / ( ! ` k ) ) e. NN ) |
| 89 |
86 88
|
eqeltrd |
|- ( ( ph /\ k e. ( 0 ... Q ) ) -> ( ( ! ` Q ) x. ( F ` k ) ) e. NN ) |
| 90 |
89
|
nnzd |
|- ( ( ph /\ k e. ( 0 ... Q ) ) -> ( ( ! ` Q ) x. ( F ` k ) ) e. ZZ ) |
| 91 |
5 90
|
fsumzcl |
|- ( ph -> sum_ k e. ( 0 ... Q ) ( ( ! ` Q ) x. ( F ` k ) ) e. ZZ ) |
| 92 |
76 91
|
eqeltrd |
|- ( ph -> ( ( ! ` Q ) x. sum_ k e. ( 0 ... Q ) ( F ` k ) ) e. ZZ ) |
| 93 |
75 92
|
zsubcld |
|- ( ph -> ( ( ( ! ` Q ) x. _e ) - ( ( ! ` Q ) x. sum_ k e. ( 0 ... Q ) ( F ` k ) ) ) e. ZZ ) |
| 94 |
63 93
|
eqeltrd |
|- ( ph -> ( ( ! ` Q ) x. sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) e. ZZ ) |
| 95 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
| 96 |
57
|
nnrpd |
|- ( ph -> ( ! ` Q ) e. RR+ ) |
| 97 |
96 39
|
rpmulcld |
|- ( ph -> ( ( ! ` Q ) x. sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) e. RR+ ) |
| 98 |
97
|
rpgt0d |
|- ( ph -> 0 < ( ( ! ` Q ) x. sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) ) |
| 99 |
24
|
peano2nnd |
|- ( ph -> ( ( Q + 1 ) + 1 ) e. NN ) |
| 100 |
99
|
nnred |
|- ( ph -> ( ( Q + 1 ) + 1 ) e. RR ) |
| 101 |
25
|
faccld |
|- ( ph -> ( ! ` ( Q + 1 ) ) e. NN ) |
| 102 |
101 24
|
nnmulcld |
|- ( ph -> ( ( ! ` ( Q + 1 ) ) x. ( Q + 1 ) ) e. NN ) |
| 103 |
100 102
|
nndivred |
|- ( ph -> ( ( ( Q + 1 ) + 1 ) / ( ( ! ` ( Q + 1 ) ) x. ( Q + 1 ) ) ) e. RR ) |
| 104 |
57
|
nnrecred |
|- ( ph -> ( 1 / ( ! ` Q ) ) e. RR ) |
| 105 |
|
abs1 |
|- ( abs ` 1 ) = 1 |
| 106 |
105
|
oveq1i |
|- ( ( abs ` 1 ) ^ n ) = ( 1 ^ n ) |
| 107 |
106
|
oveq1i |
|- ( ( ( abs ` 1 ) ^ n ) / ( ! ` n ) ) = ( ( 1 ^ n ) / ( ! ` n ) ) |
| 108 |
107
|
mpteq2i |
|- ( n e. NN0 |-> ( ( ( abs ` 1 ) ^ n ) / ( ! ` n ) ) ) = ( n e. NN0 |-> ( ( 1 ^ n ) / ( ! ` n ) ) ) |
| 109 |
12 108
|
eqtr4i |
|- F = ( n e. NN0 |-> ( ( ( abs ` 1 ) ^ n ) / ( ! ` n ) ) ) |
| 110 |
|
eqid |
|- ( n e. NN0 |-> ( ( ( ( abs ` 1 ) ^ ( Q + 1 ) ) / ( ! ` ( Q + 1 ) ) ) x. ( ( 1 / ( ( Q + 1 ) + 1 ) ) ^ n ) ) ) = ( n e. NN0 |-> ( ( ( ( abs ` 1 ) ^ ( Q + 1 ) ) / ( ! ` ( Q + 1 ) ) ) x. ( ( 1 / ( ( Q + 1 ) + 1 ) ) ^ n ) ) ) |
| 111 |
|
1le1 |
|- 1 <_ 1 |
| 112 |
105 111
|
eqbrtri |
|- ( abs ` 1 ) <_ 1 |
| 113 |
112
|
a1i |
|- ( ph -> ( abs ` 1 ) <_ 1 ) |
| 114 |
12 109 110 24 16 113
|
eftlub |
|- ( ph -> ( abs ` sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) <_ ( ( ( abs ` 1 ) ^ ( Q + 1 ) ) x. ( ( ( Q + 1 ) + 1 ) / ( ( ! ` ( Q + 1 ) ) x. ( Q + 1 ) ) ) ) ) |
| 115 |
39
|
rprege0d |
|- ( ph -> ( sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) e. RR /\ 0 <_ sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) ) |
| 116 |
|
absid |
|- ( ( sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) e. RR /\ 0 <_ sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) -> ( abs ` sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) = sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) |
| 117 |
115 116
|
syl |
|- ( ph -> ( abs ` sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) = sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) |
| 118 |
105
|
oveq1i |
|- ( ( abs ` 1 ) ^ ( Q + 1 ) ) = ( 1 ^ ( Q + 1 ) ) |
| 119 |
24
|
nnzd |
|- ( ph -> ( Q + 1 ) e. ZZ ) |
| 120 |
|
1exp |
|- ( ( Q + 1 ) e. ZZ -> ( 1 ^ ( Q + 1 ) ) = 1 ) |
| 121 |
119 120
|
syl |
|- ( ph -> ( 1 ^ ( Q + 1 ) ) = 1 ) |
| 122 |
118 121
|
eqtrid |
|- ( ph -> ( ( abs ` 1 ) ^ ( Q + 1 ) ) = 1 ) |
| 123 |
122
|
oveq1d |
|- ( ph -> ( ( ( abs ` 1 ) ^ ( Q + 1 ) ) x. ( ( ( Q + 1 ) + 1 ) / ( ( ! ` ( Q + 1 ) ) x. ( Q + 1 ) ) ) ) = ( 1 x. ( ( ( Q + 1 ) + 1 ) / ( ( ! ` ( Q + 1 ) ) x. ( Q + 1 ) ) ) ) ) |
| 124 |
103
|
recnd |
|- ( ph -> ( ( ( Q + 1 ) + 1 ) / ( ( ! ` ( Q + 1 ) ) x. ( Q + 1 ) ) ) e. CC ) |
| 125 |
124
|
mullidd |
|- ( ph -> ( 1 x. ( ( ( Q + 1 ) + 1 ) / ( ( ! ` ( Q + 1 ) ) x. ( Q + 1 ) ) ) ) = ( ( ( Q + 1 ) + 1 ) / ( ( ! ` ( Q + 1 ) ) x. ( Q + 1 ) ) ) ) |
| 126 |
123 125
|
eqtrd |
|- ( ph -> ( ( ( abs ` 1 ) ^ ( Q + 1 ) ) x. ( ( ( Q + 1 ) + 1 ) / ( ( ! ` ( Q + 1 ) ) x. ( Q + 1 ) ) ) ) = ( ( ( Q + 1 ) + 1 ) / ( ( ! ` ( Q + 1 ) ) x. ( Q + 1 ) ) ) ) |
| 127 |
114 117 126
|
3brtr3d |
|- ( ph -> sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) <_ ( ( ( Q + 1 ) + 1 ) / ( ( ! ` ( Q + 1 ) ) x. ( Q + 1 ) ) ) ) |
| 128 |
24
|
nnred |
|- ( ph -> ( Q + 1 ) e. RR ) |
| 129 |
128 128
|
readdcld |
|- ( ph -> ( ( Q + 1 ) + ( Q + 1 ) ) e. RR ) |
| 130 |
128 128
|
remulcld |
|- ( ph -> ( ( Q + 1 ) x. ( Q + 1 ) ) e. RR ) |
| 131 |
|
1red |
|- ( ph -> 1 e. RR ) |
| 132 |
3
|
nnge1d |
|- ( ph -> 1 <_ Q ) |
| 133 |
|
1nn |
|- 1 e. NN |
| 134 |
|
nnleltp1 |
|- ( ( 1 e. NN /\ Q e. NN ) -> ( 1 <_ Q <-> 1 < ( Q + 1 ) ) ) |
| 135 |
133 3 134
|
sylancr |
|- ( ph -> ( 1 <_ Q <-> 1 < ( Q + 1 ) ) ) |
| 136 |
132 135
|
mpbid |
|- ( ph -> 1 < ( Q + 1 ) ) |
| 137 |
131 128 128 136
|
ltadd2dd |
|- ( ph -> ( ( Q + 1 ) + 1 ) < ( ( Q + 1 ) + ( Q + 1 ) ) ) |
| 138 |
24
|
nncnd |
|- ( ph -> ( Q + 1 ) e. CC ) |
| 139 |
138
|
2timesd |
|- ( ph -> ( 2 x. ( Q + 1 ) ) = ( ( Q + 1 ) + ( Q + 1 ) ) ) |
| 140 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
| 141 |
131 69 131 132
|
leadd1dd |
|- ( ph -> ( 1 + 1 ) <_ ( Q + 1 ) ) |
| 142 |
140 141
|
eqbrtrid |
|- ( ph -> 2 <_ ( Q + 1 ) ) |
| 143 |
|
2re |
|- 2 e. RR |
| 144 |
143
|
a1i |
|- ( ph -> 2 e. RR ) |
| 145 |
24
|
nngt0d |
|- ( ph -> 0 < ( Q + 1 ) ) |
| 146 |
|
lemul1 |
|- ( ( 2 e. RR /\ ( Q + 1 ) e. RR /\ ( ( Q + 1 ) e. RR /\ 0 < ( Q + 1 ) ) ) -> ( 2 <_ ( Q + 1 ) <-> ( 2 x. ( Q + 1 ) ) <_ ( ( Q + 1 ) x. ( Q + 1 ) ) ) ) |
| 147 |
144 128 128 145 146
|
syl112anc |
|- ( ph -> ( 2 <_ ( Q + 1 ) <-> ( 2 x. ( Q + 1 ) ) <_ ( ( Q + 1 ) x. ( Q + 1 ) ) ) ) |
| 148 |
142 147
|
mpbid |
|- ( ph -> ( 2 x. ( Q + 1 ) ) <_ ( ( Q + 1 ) x. ( Q + 1 ) ) ) |
| 149 |
139 148
|
eqbrtrrd |
|- ( ph -> ( ( Q + 1 ) + ( Q + 1 ) ) <_ ( ( Q + 1 ) x. ( Q + 1 ) ) ) |
| 150 |
100 129 130 137 149
|
ltletrd |
|- ( ph -> ( ( Q + 1 ) + 1 ) < ( ( Q + 1 ) x. ( Q + 1 ) ) ) |
| 151 |
|
facp1 |
|- ( Q e. NN0 -> ( ! ` ( Q + 1 ) ) = ( ( ! ` Q ) x. ( Q + 1 ) ) ) |
| 152 |
56 151
|
syl |
|- ( ph -> ( ! ` ( Q + 1 ) ) = ( ( ! ` Q ) x. ( Q + 1 ) ) ) |
| 153 |
152
|
oveq1d |
|- ( ph -> ( ( ! ` ( Q + 1 ) ) / ( ! ` Q ) ) = ( ( ( ! ` Q ) x. ( Q + 1 ) ) / ( ! ` Q ) ) ) |
| 154 |
101
|
nncnd |
|- ( ph -> ( ! ` ( Q + 1 ) ) e. CC ) |
| 155 |
57
|
nnne0d |
|- ( ph -> ( ! ` Q ) =/= 0 ) |
| 156 |
154 58 155
|
divrecd |
|- ( ph -> ( ( ! ` ( Q + 1 ) ) / ( ! ` Q ) ) = ( ( ! ` ( Q + 1 ) ) x. ( 1 / ( ! ` Q ) ) ) ) |
| 157 |
138 58 155
|
divcan3d |
|- ( ph -> ( ( ( ! ` Q ) x. ( Q + 1 ) ) / ( ! ` Q ) ) = ( Q + 1 ) ) |
| 158 |
153 156 157
|
3eqtr3rd |
|- ( ph -> ( Q + 1 ) = ( ( ! ` ( Q + 1 ) ) x. ( 1 / ( ! ` Q ) ) ) ) |
| 159 |
158
|
oveq1d |
|- ( ph -> ( ( Q + 1 ) x. ( Q + 1 ) ) = ( ( ( ! ` ( Q + 1 ) ) x. ( 1 / ( ! ` Q ) ) ) x. ( Q + 1 ) ) ) |
| 160 |
104
|
recnd |
|- ( ph -> ( 1 / ( ! ` Q ) ) e. CC ) |
| 161 |
154 160 138
|
mul32d |
|- ( ph -> ( ( ( ! ` ( Q + 1 ) ) x. ( 1 / ( ! ` Q ) ) ) x. ( Q + 1 ) ) = ( ( ( ! ` ( Q + 1 ) ) x. ( Q + 1 ) ) x. ( 1 / ( ! ` Q ) ) ) ) |
| 162 |
159 161
|
eqtrd |
|- ( ph -> ( ( Q + 1 ) x. ( Q + 1 ) ) = ( ( ( ! ` ( Q + 1 ) ) x. ( Q + 1 ) ) x. ( 1 / ( ! ` Q ) ) ) ) |
| 163 |
150 162
|
breqtrd |
|- ( ph -> ( ( Q + 1 ) + 1 ) < ( ( ( ! ` ( Q + 1 ) ) x. ( Q + 1 ) ) x. ( 1 / ( ! ` Q ) ) ) ) |
| 164 |
102
|
nnred |
|- ( ph -> ( ( ! ` ( Q + 1 ) ) x. ( Q + 1 ) ) e. RR ) |
| 165 |
102
|
nngt0d |
|- ( ph -> 0 < ( ( ! ` ( Q + 1 ) ) x. ( Q + 1 ) ) ) |
| 166 |
|
ltdivmul |
|- ( ( ( ( Q + 1 ) + 1 ) e. RR /\ ( 1 / ( ! ` Q ) ) e. RR /\ ( ( ( ! ` ( Q + 1 ) ) x. ( Q + 1 ) ) e. RR /\ 0 < ( ( ! ` ( Q + 1 ) ) x. ( Q + 1 ) ) ) ) -> ( ( ( ( Q + 1 ) + 1 ) / ( ( ! ` ( Q + 1 ) ) x. ( Q + 1 ) ) ) < ( 1 / ( ! ` Q ) ) <-> ( ( Q + 1 ) + 1 ) < ( ( ( ! ` ( Q + 1 ) ) x. ( Q + 1 ) ) x. ( 1 / ( ! ` Q ) ) ) ) ) |
| 167 |
100 104 164 165 166
|
syl112anc |
|- ( ph -> ( ( ( ( Q + 1 ) + 1 ) / ( ( ! ` ( Q + 1 ) ) x. ( Q + 1 ) ) ) < ( 1 / ( ! ` Q ) ) <-> ( ( Q + 1 ) + 1 ) < ( ( ( ! ` ( Q + 1 ) ) x. ( Q + 1 ) ) x. ( 1 / ( ! ` Q ) ) ) ) ) |
| 168 |
163 167
|
mpbird |
|- ( ph -> ( ( ( Q + 1 ) + 1 ) / ( ( ! ` ( Q + 1 ) ) x. ( Q + 1 ) ) ) < ( 1 / ( ! ` Q ) ) ) |
| 169 |
40 103 104 127 168
|
lelttrd |
|- ( ph -> sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) < ( 1 / ( ! ` Q ) ) ) |
| 170 |
40 131 96
|
ltmuldiv2d |
|- ( ph -> ( ( ( ! ` Q ) x. sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) < 1 <-> sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) < ( 1 / ( ! ` Q ) ) ) ) |
| 171 |
169 170
|
mpbird |
|- ( ph -> ( ( ! ` Q ) x. sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) < 1 ) |
| 172 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
| 173 |
171 172
|
breqtrrdi |
|- ( ph -> ( ( ! ` Q ) x. sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) < ( 0 + 1 ) ) |
| 174 |
|
btwnnz |
|- ( ( 0 e. ZZ /\ 0 < ( ( ! ` Q ) x. sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) /\ ( ( ! ` Q ) x. sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) < ( 0 + 1 ) ) -> -. ( ( ! ` Q ) x. sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) e. ZZ ) |
| 175 |
95 98 173 174
|
syl3anc |
|- ( ph -> -. ( ( ! ` Q ) x. sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) e. ZZ ) |
| 176 |
94 175
|
pm2.65i |
|- -. ph |