Metamath Proof Explorer


Theorem el

Description: Every set is an element of some other set. See elALT for a shorter proof using more axioms, and see elALT2 for a proof that uses ax-9 and ax-pow instead of ax-pr . (Contributed by NM, 4-Jan-2002) (Proof shortened by Andrew Salmon, 25-Jul-2011) Avoid ax-9 , ax-pow . (Revised by BTernaryTau, 2-Dec-2024)

Ref Expression
Assertion el
|- E. y x e. y

Proof

Step Hyp Ref Expression
1 ax-pr
 |-  E. y A. z ( ( z = x \/ z = x ) -> z e. y )
2 pm4.25
 |-  ( z = x <-> ( z = x \/ z = x ) )
3 2 imbi1i
 |-  ( ( z = x -> z e. y ) <-> ( ( z = x \/ z = x ) -> z e. y ) )
4 3 albii
 |-  ( A. z ( z = x -> z e. y ) <-> A. z ( ( z = x \/ z = x ) -> z e. y ) )
5 elequ1
 |-  ( z = x -> ( z e. y <-> x e. y ) )
6 5 equsalvw
 |-  ( A. z ( z = x -> z e. y ) <-> x e. y )
7 4 6 bitr3i
 |-  ( A. z ( ( z = x \/ z = x ) -> z e. y ) <-> x e. y )
8 7 exbii
 |-  ( E. y A. z ( ( z = x \/ z = x ) -> z e. y ) <-> E. y x e. y )
9 1 8 mpbi
 |-  E. y x e. y