Description: Every set is an element of some other set. See elALT for a shorter proof using more axioms. (Contributed by NM, 4-Jan-2002) (Proof shortened by Andrew Salmon, 25-Jul-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | el | |- E. y x e. y |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zfpow | |- E. y A. z ( A. y ( y e. z -> y e. x ) -> z e. y ) |
|
2 | ax9 | |- ( z = x -> ( y e. z -> y e. x ) ) |
|
3 | 2 | alrimiv | |- ( z = x -> A. y ( y e. z -> y e. x ) ) |
4 | ax8 | |- ( z = x -> ( z e. y -> x e. y ) ) |
|
5 | 3 4 | embantd | |- ( z = x -> ( ( A. y ( y e. z -> y e. x ) -> z e. y ) -> x e. y ) ) |
6 | 5 | spimvw | |- ( A. z ( A. y ( y e. z -> y e. x ) -> z e. y ) -> x e. y ) |
7 | 1 6 | eximii | |- E. y x e. y |