Metamath Proof Explorer


Theorem el0321old

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 13-Jun-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses el0321old.1
|- ph
el0321old.2
|- (. (. ps ,. ch ,. th ). ->. ta ).
el0321old.3
|- ( ( ph /\ ta ) -> et )
Assertion el0321old
|- (. (. ps ,. ch ,. th ). ->. et ).

Proof

Step Hyp Ref Expression
1 el0321old.1
 |-  ph
2 el0321old.2
 |-  (. (. ps ,. ch ,. th ). ->. ta ).
3 el0321old.3
 |-  ( ( ph /\ ta ) -> et )
4 2 dfvd3ani
 |-  ( ( ps /\ ch /\ th ) -> ta )
5 1 4 3 eel0321old
 |-  ( ( ps /\ ch /\ th ) -> et )
6 5 dfvd3anir
 |-  (. (. ps ,. ch ,. th ). ->. et ).