Metamath Proof Explorer


Theorem el12

Description: Virtual deduction form of syl2an . (Contributed by Alan Sare, 23-Apr-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses el12.1
|- (. ph ->. ps ).
el12.2
|- (. ta ->. ch ).
el12.3
|- ( ( ps /\ ch ) -> th )
Assertion el12
|- (. (. ph ,. ta ). ->. th ).

Proof

Step Hyp Ref Expression
1 el12.1
 |-  (. ph ->. ps ).
2 el12.2
 |-  (. ta ->. ch ).
3 el12.3
 |-  ( ( ps /\ ch ) -> th )
4 1 in1
 |-  ( ph -> ps )
5 2 in1
 |-  ( ta -> ch )
6 4 5 3 syl2an
 |-  ( ( ph /\ ta ) -> th )
7 6 dfvd2anir
 |-  (. (. ph ,. ta ). ->. th ).