Description: Virtual deduction form of syl2an . (Contributed by Alan Sare, 23-Apr-2015) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | el12.1 | |- (. ph ->. ps ). |
|
el12.2 | |- (. ta ->. ch ). |
||
el12.3 | |- ( ( ps /\ ch ) -> th ) |
||
Assertion | el12 | |- (. (. ph ,. ta ). ->. th ). |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | el12.1 | |- (. ph ->. ps ). |
|
2 | el12.2 | |- (. ta ->. ch ). |
|
3 | el12.3 | |- ( ( ps /\ ch ) -> th ) |
|
4 | 1 | in1 | |- ( ph -> ps ) |
5 | 2 | in1 | |- ( ta -> ch ) |
6 | 4 5 3 | syl2an | |- ( ( ph /\ ta ) -> th ) |
7 | 6 | dfvd2anir | |- (. (. ph ,. ta ). ->. th ). |