Description: Virtual deduction form of syl2an . (Contributed by Alan Sare, 23-Apr-2015) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | el12.1 | |- (. ph ->. ps ). | |
| el12.2 | |- (. ta ->. ch ). | ||
| el12.3 | |- ( ( ps /\ ch ) -> th ) | ||
| Assertion | el12 | |- (. (. ph ,. ta ). ->. th ). | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | el12.1 | |- (. ph ->. ps ). | |
| 2 | el12.2 | |- (. ta ->. ch ). | |
| 3 | el12.3 | |- ( ( ps /\ ch ) -> th ) | |
| 4 | 1 | in1 | |- ( ph -> ps ) | 
| 5 | 2 | in1 | |- ( ta -> ch ) | 
| 6 | 4 5 3 | syl2an | |- ( ( ph /\ ta ) -> th ) | 
| 7 | 6 | dfvd2anir | |- (. (. ph ,. ta ). ->. th ). |