Metamath Proof Explorer


Theorem el123

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 13-Jun-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses el123.1
|- (. ph ->. ps ).
el123.2
|- (. ch ->. th ).
el123.3
|- (. ta ->. et ).
el123.4
|- ( ( ps /\ th /\ et ) -> ze )
Assertion el123
|- (. (. ph ,. ch ,. ta ). ->. ze ).

Proof

Step Hyp Ref Expression
1 el123.1
 |-  (. ph ->. ps ).
2 el123.2
 |-  (. ch ->. th ).
3 el123.3
 |-  (. ta ->. et ).
4 el123.4
 |-  ( ( ps /\ th /\ et ) -> ze )
5 1 in1
 |-  ( ph -> ps )
6 2 in1
 |-  ( ch -> th )
7 3 in1
 |-  ( ta -> et )
8 5 6 7 4 syl3an
 |-  ( ( ph /\ ch /\ ta ) -> ze )
9 8 dfvd3anir
 |-  (. (. ph ,. ch ,. ta ). ->. ze ).