Metamath Proof Explorer


Theorem el1o

Description: Membership in ordinal one. (Contributed by NM, 5-Jan-2005)

Ref Expression
Assertion el1o
|- ( A e. 1o <-> A = (/) )

Proof

Step Hyp Ref Expression
1 df1o2
 |-  1o = { (/) }
2 1 eleq2i
 |-  ( A e. 1o <-> A e. { (/) } )
3 0ex
 |-  (/) e. _V
4 3 elsn2
 |-  ( A e. { (/) } <-> A = (/) )
5 2 4 bitri
 |-  ( A e. 1o <-> A = (/) )