Description: Membership in ordinal one. (Contributed by NM, 5-Jan-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | el1o | |- ( A e. 1o <-> A = (/) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df1o2 | |- 1o = { (/) } |
|
2 | 1 | eleq2i | |- ( A e. 1o <-> A e. { (/) } ) |
3 | 0ex | |- (/) e. _V |
|
4 | 3 | elsn2 | |- ( A e. { (/) } <-> A = (/) ) |
5 | 2 4 | bitri | |- ( A e. 1o <-> A = (/) ) |