Description: Membership in ordinal one. (Contributed by NM, 5-Jan-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | el1o | |- ( A e. 1o <-> A = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df1o2 | |- 1o = { (/) } |
|
| 2 | 1 | eleq2i | |- ( A e. 1o <-> A e. { (/) } ) |
| 3 | 0ex | |- (/) e. _V |
|
| 4 | 3 | elsn2 | |- ( A e. { (/) } <-> A = (/) ) |
| 5 | 2 4 | bitri | |- ( A e. 1o <-> A = (/) ) |