Metamath Proof Explorer


Theorem el2122old

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 13-Jun-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses el2122old.1
|- (. (. ph ,. ps ). ->. ch ).
el2122old.2
|- (. ps ->. th ).
el2122old.3
|- (. ps ->. ta ).
el2122old.4
|- ( ( ch /\ th /\ ta ) -> et )
Assertion el2122old
|- (. (. ph ,. ps ). ->. et ).

Proof

Step Hyp Ref Expression
1 el2122old.1
 |-  (. (. ph ,. ps ). ->. ch ).
2 el2122old.2
 |-  (. ps ->. th ).
3 el2122old.3
 |-  (. ps ->. ta ).
4 el2122old.4
 |-  ( ( ch /\ th /\ ta ) -> et )
5 1 dfvd2ani
 |-  ( ( ph /\ ps ) -> ch )
6 2 in1
 |-  ( ps -> th )
7 3 in1
 |-  ( ps -> ta )
8 5 6 7 4 eel2122old
 |-  ( ( ph /\ ps ) -> et )
9 8 dfvd2anir
 |-  (. (. ph ,. ps ). ->. et ).