| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							elun | 
							 |-  ( X e. ( { A } u. ( { B , C , D } u. { E , F , G } ) ) <-> ( X e. { A } \/ X e. ( { B , C , D } u. { E , F , G } ) ) ) | 
						
						
							| 2 | 
							
								
							 | 
							elsng | 
							 |-  ( X e. V -> ( X e. { A } <-> X = A ) ) | 
						
						
							| 3 | 
							
								
							 | 
							elun | 
							 |-  ( X e. ( { B , C , D } u. { E , F , G } ) <-> ( X e. { B , C , D } \/ X e. { E , F , G } ) ) | 
						
						
							| 4 | 
							
								
							 | 
							eltpg | 
							 |-  ( X e. V -> ( X e. { B , C , D } <-> ( X = B \/ X = C \/ X = D ) ) ) | 
						
						
							| 5 | 
							
								
							 | 
							eltpg | 
							 |-  ( X e. V -> ( X e. { E , F , G } <-> ( X = E \/ X = F \/ X = G ) ) ) | 
						
						
							| 6 | 
							
								4 5
							 | 
							orbi12d | 
							 |-  ( X e. V -> ( ( X e. { B , C , D } \/ X e. { E , F , G } ) <-> ( ( X = B \/ X = C \/ X = D ) \/ ( X = E \/ X = F \/ X = G ) ) ) ) | 
						
						
							| 7 | 
							
								3 6
							 | 
							bitrid | 
							 |-  ( X e. V -> ( X e. ( { B , C , D } u. { E , F , G } ) <-> ( ( X = B \/ X = C \/ X = D ) \/ ( X = E \/ X = F \/ X = G ) ) ) ) | 
						
						
							| 8 | 
							
								2 7
							 | 
							orbi12d | 
							 |-  ( X e. V -> ( ( X e. { A } \/ X e. ( { B , C , D } u. { E , F , G } ) ) <-> ( X = A \/ ( ( X = B \/ X = C \/ X = D ) \/ ( X = E \/ X = F \/ X = G ) ) ) ) ) | 
						
						
							| 9 | 
							
								1 8
							 | 
							bitrid | 
							 |-  ( X e. V -> ( X e. ( { A } u. ( { B , C , D } u. { E , F , G } ) ) <-> ( X = A \/ ( ( X = B \/ X = C \/ X = D ) \/ ( X = E \/ X = F \/ X = G ) ) ) ) ) |