Description: Alternate proof of el , shorter but requiring more axioms. (Contributed by NM, 4-Jan-2002) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | elALT | |- E. y x e. y |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex | |- x e. _V |
|
2 | 1 | snid | |- x e. { x } |
3 | snex | |- { x } e. _V |
|
4 | eleq2 | |- ( y = { x } -> ( x e. y <-> x e. { x } ) ) |
|
5 | 3 4 | spcev | |- ( x e. { x } -> E. y x e. y ) |
6 | 2 5 | ax-mp | |- E. y x e. y |