Metamath Proof Explorer


Theorem elALT

Description: Alternate proof of el , shorter but requiring more axioms. (Contributed by NM, 4-Jan-2002) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion elALT
|- E. y x e. y

Proof

Step Hyp Ref Expression
1 vex
 |-  x e. _V
2 1 snid
 |-  x e. { x }
3 snex
 |-  { x } e. _V
4 eleq2
 |-  ( y = { x } -> ( x e. y <-> x e. { x } ) )
5 3 4 spcev
 |-  ( x e. { x } -> E. y x e. y )
6 2 5 ax-mp
 |-  E. y x e. y