Step |
Hyp |
Ref |
Expression |
1 |
|
elaa2lem.a |
|- ( ph -> A e. AA ) |
2 |
|
elaa2lem.an0 |
|- ( ph -> A =/= 0 ) |
3 |
|
elaa2lem.g |
|- ( ph -> G e. ( Poly ` ZZ ) ) |
4 |
|
elaa2lem.gn0 |
|- ( ph -> G =/= 0p ) |
5 |
|
elaa2lem.ga |
|- ( ph -> ( G ` A ) = 0 ) |
6 |
|
elaa2lem.m |
|- M = inf ( { n e. NN0 | ( ( coeff ` G ) ` n ) =/= 0 } , RR , < ) |
7 |
|
elaa2lem.i |
|- I = ( k e. NN0 |-> ( ( coeff ` G ) ` ( k + M ) ) ) |
8 |
|
elaa2lem.f |
|- F = ( z e. CC |-> sum_ k e. ( 0 ... ( ( deg ` G ) - M ) ) ( ( I ` k ) x. ( z ^ k ) ) ) |
9 |
8
|
a1i |
|- ( ph -> F = ( z e. CC |-> sum_ k e. ( 0 ... ( ( deg ` G ) - M ) ) ( ( I ` k ) x. ( z ^ k ) ) ) ) |
10 |
|
zsscn |
|- ZZ C_ CC |
11 |
10
|
a1i |
|- ( ph -> ZZ C_ CC ) |
12 |
|
dgrcl |
|- ( G e. ( Poly ` ZZ ) -> ( deg ` G ) e. NN0 ) |
13 |
3 12
|
syl |
|- ( ph -> ( deg ` G ) e. NN0 ) |
14 |
13
|
nn0zd |
|- ( ph -> ( deg ` G ) e. ZZ ) |
15 |
|
ssrab2 |
|- { n e. NN0 | ( ( coeff ` G ) ` n ) =/= 0 } C_ NN0 |
16 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
17 |
15 16
|
sseqtri |
|- { n e. NN0 | ( ( coeff ` G ) ` n ) =/= 0 } C_ ( ZZ>= ` 0 ) |
18 |
17
|
a1i |
|- ( ph -> { n e. NN0 | ( ( coeff ` G ) ` n ) =/= 0 } C_ ( ZZ>= ` 0 ) ) |
19 |
4
|
neneqd |
|- ( ph -> -. G = 0p ) |
20 |
|
eqid |
|- ( deg ` G ) = ( deg ` G ) |
21 |
|
eqid |
|- ( coeff ` G ) = ( coeff ` G ) |
22 |
20 21
|
dgreq0 |
|- ( G e. ( Poly ` ZZ ) -> ( G = 0p <-> ( ( coeff ` G ) ` ( deg ` G ) ) = 0 ) ) |
23 |
3 22
|
syl |
|- ( ph -> ( G = 0p <-> ( ( coeff ` G ) ` ( deg ` G ) ) = 0 ) ) |
24 |
19 23
|
mtbid |
|- ( ph -> -. ( ( coeff ` G ) ` ( deg ` G ) ) = 0 ) |
25 |
24
|
neqned |
|- ( ph -> ( ( coeff ` G ) ` ( deg ` G ) ) =/= 0 ) |
26 |
13 25
|
jca |
|- ( ph -> ( ( deg ` G ) e. NN0 /\ ( ( coeff ` G ) ` ( deg ` G ) ) =/= 0 ) ) |
27 |
|
fveq2 |
|- ( n = ( deg ` G ) -> ( ( coeff ` G ) ` n ) = ( ( coeff ` G ) ` ( deg ` G ) ) ) |
28 |
27
|
neeq1d |
|- ( n = ( deg ` G ) -> ( ( ( coeff ` G ) ` n ) =/= 0 <-> ( ( coeff ` G ) ` ( deg ` G ) ) =/= 0 ) ) |
29 |
28
|
elrab |
|- ( ( deg ` G ) e. { n e. NN0 | ( ( coeff ` G ) ` n ) =/= 0 } <-> ( ( deg ` G ) e. NN0 /\ ( ( coeff ` G ) ` ( deg ` G ) ) =/= 0 ) ) |
30 |
26 29
|
sylibr |
|- ( ph -> ( deg ` G ) e. { n e. NN0 | ( ( coeff ` G ) ` n ) =/= 0 } ) |
31 |
30
|
ne0d |
|- ( ph -> { n e. NN0 | ( ( coeff ` G ) ` n ) =/= 0 } =/= (/) ) |
32 |
|
infssuzcl |
|- ( ( { n e. NN0 | ( ( coeff ` G ) ` n ) =/= 0 } C_ ( ZZ>= ` 0 ) /\ { n e. NN0 | ( ( coeff ` G ) ` n ) =/= 0 } =/= (/) ) -> inf ( { n e. NN0 | ( ( coeff ` G ) ` n ) =/= 0 } , RR , < ) e. { n e. NN0 | ( ( coeff ` G ) ` n ) =/= 0 } ) |
33 |
18 31 32
|
syl2anc |
|- ( ph -> inf ( { n e. NN0 | ( ( coeff ` G ) ` n ) =/= 0 } , RR , < ) e. { n e. NN0 | ( ( coeff ` G ) ` n ) =/= 0 } ) |
34 |
15 33
|
sselid |
|- ( ph -> inf ( { n e. NN0 | ( ( coeff ` G ) ` n ) =/= 0 } , RR , < ) e. NN0 ) |
35 |
6 34
|
eqeltrid |
|- ( ph -> M e. NN0 ) |
36 |
35
|
nn0zd |
|- ( ph -> M e. ZZ ) |
37 |
14 36
|
zsubcld |
|- ( ph -> ( ( deg ` G ) - M ) e. ZZ ) |
38 |
6
|
a1i |
|- ( ph -> M = inf ( { n e. NN0 | ( ( coeff ` G ) ` n ) =/= 0 } , RR , < ) ) |
39 |
|
infssuzle |
|- ( ( { n e. NN0 | ( ( coeff ` G ) ` n ) =/= 0 } C_ ( ZZ>= ` 0 ) /\ ( deg ` G ) e. { n e. NN0 | ( ( coeff ` G ) ` n ) =/= 0 } ) -> inf ( { n e. NN0 | ( ( coeff ` G ) ` n ) =/= 0 } , RR , < ) <_ ( deg ` G ) ) |
40 |
18 30 39
|
syl2anc |
|- ( ph -> inf ( { n e. NN0 | ( ( coeff ` G ) ` n ) =/= 0 } , RR , < ) <_ ( deg ` G ) ) |
41 |
38 40
|
eqbrtrd |
|- ( ph -> M <_ ( deg ` G ) ) |
42 |
13
|
nn0red |
|- ( ph -> ( deg ` G ) e. RR ) |
43 |
35
|
nn0red |
|- ( ph -> M e. RR ) |
44 |
42 43
|
subge0d |
|- ( ph -> ( 0 <_ ( ( deg ` G ) - M ) <-> M <_ ( deg ` G ) ) ) |
45 |
41 44
|
mpbird |
|- ( ph -> 0 <_ ( ( deg ` G ) - M ) ) |
46 |
37 45
|
jca |
|- ( ph -> ( ( ( deg ` G ) - M ) e. ZZ /\ 0 <_ ( ( deg ` G ) - M ) ) ) |
47 |
|
elnn0z |
|- ( ( ( deg ` G ) - M ) e. NN0 <-> ( ( ( deg ` G ) - M ) e. ZZ /\ 0 <_ ( ( deg ` G ) - M ) ) ) |
48 |
46 47
|
sylibr |
|- ( ph -> ( ( deg ` G ) - M ) e. NN0 ) |
49 |
|
0zd |
|- ( G e. ( Poly ` ZZ ) -> 0 e. ZZ ) |
50 |
21
|
coef2 |
|- ( ( G e. ( Poly ` ZZ ) /\ 0 e. ZZ ) -> ( coeff ` G ) : NN0 --> ZZ ) |
51 |
3 49 50
|
syl2anc2 |
|- ( ph -> ( coeff ` G ) : NN0 --> ZZ ) |
52 |
51
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> ( coeff ` G ) : NN0 --> ZZ ) |
53 |
|
simpr |
|- ( ( ph /\ k e. NN0 ) -> k e. NN0 ) |
54 |
35
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> M e. NN0 ) |
55 |
53 54
|
nn0addcld |
|- ( ( ph /\ k e. NN0 ) -> ( k + M ) e. NN0 ) |
56 |
52 55
|
ffvelrnd |
|- ( ( ph /\ k e. NN0 ) -> ( ( coeff ` G ) ` ( k + M ) ) e. ZZ ) |
57 |
56 7
|
fmptd |
|- ( ph -> I : NN0 --> ZZ ) |
58 |
|
elplyr |
|- ( ( ZZ C_ CC /\ ( ( deg ` G ) - M ) e. NN0 /\ I : NN0 --> ZZ ) -> ( z e. CC |-> sum_ k e. ( 0 ... ( ( deg ` G ) - M ) ) ( ( I ` k ) x. ( z ^ k ) ) ) e. ( Poly ` ZZ ) ) |
59 |
11 48 57 58
|
syl3anc |
|- ( ph -> ( z e. CC |-> sum_ k e. ( 0 ... ( ( deg ` G ) - M ) ) ( ( I ` k ) x. ( z ^ k ) ) ) e. ( Poly ` ZZ ) ) |
60 |
9 59
|
eqeltrd |
|- ( ph -> F e. ( Poly ` ZZ ) ) |
61 |
|
simpr |
|- ( ( ( ph /\ k e. NN0 ) /\ k <_ ( ( deg ` G ) - M ) ) -> k <_ ( ( deg ` G ) - M ) ) |
62 |
61
|
iftrued |
|- ( ( ( ph /\ k e. NN0 ) /\ k <_ ( ( deg ` G ) - M ) ) -> if ( k <_ ( ( deg ` G ) - M ) , ( ( coeff ` G ) ` ( k + M ) ) , 0 ) = ( ( coeff ` G ) ` ( k + M ) ) ) |
63 |
|
iffalse |
|- ( -. k <_ ( ( deg ` G ) - M ) -> if ( k <_ ( ( deg ` G ) - M ) , ( ( coeff ` G ) ` ( k + M ) ) , 0 ) = 0 ) |
64 |
63
|
adantl |
|- ( ( ( ph /\ k e. NN0 ) /\ -. k <_ ( ( deg ` G ) - M ) ) -> if ( k <_ ( ( deg ` G ) - M ) , ( ( coeff ` G ) ` ( k + M ) ) , 0 ) = 0 ) |
65 |
|
simpr |
|- ( ( ( ph /\ k e. NN0 ) /\ -. k <_ ( ( deg ` G ) - M ) ) -> -. k <_ ( ( deg ` G ) - M ) ) |
66 |
42
|
ad2antrr |
|- ( ( ( ph /\ k e. NN0 ) /\ -. k <_ ( ( deg ` G ) - M ) ) -> ( deg ` G ) e. RR ) |
67 |
43
|
ad2antrr |
|- ( ( ( ph /\ k e. NN0 ) /\ -. k <_ ( ( deg ` G ) - M ) ) -> M e. RR ) |
68 |
66 67
|
resubcld |
|- ( ( ( ph /\ k e. NN0 ) /\ -. k <_ ( ( deg ` G ) - M ) ) -> ( ( deg ` G ) - M ) e. RR ) |
69 |
|
nn0re |
|- ( k e. NN0 -> k e. RR ) |
70 |
69
|
ad2antlr |
|- ( ( ( ph /\ k e. NN0 ) /\ -. k <_ ( ( deg ` G ) - M ) ) -> k e. RR ) |
71 |
68 70
|
ltnled |
|- ( ( ( ph /\ k e. NN0 ) /\ -. k <_ ( ( deg ` G ) - M ) ) -> ( ( ( deg ` G ) - M ) < k <-> -. k <_ ( ( deg ` G ) - M ) ) ) |
72 |
65 71
|
mpbird |
|- ( ( ( ph /\ k e. NN0 ) /\ -. k <_ ( ( deg ` G ) - M ) ) -> ( ( deg ` G ) - M ) < k ) |
73 |
66 67 70
|
ltsubaddd |
|- ( ( ( ph /\ k e. NN0 ) /\ -. k <_ ( ( deg ` G ) - M ) ) -> ( ( ( deg ` G ) - M ) < k <-> ( deg ` G ) < ( k + M ) ) ) |
74 |
72 73
|
mpbid |
|- ( ( ( ph /\ k e. NN0 ) /\ -. k <_ ( ( deg ` G ) - M ) ) -> ( deg ` G ) < ( k + M ) ) |
75 |
|
olc |
|- ( ( deg ` G ) < ( k + M ) -> ( G = 0p \/ ( deg ` G ) < ( k + M ) ) ) |
76 |
74 75
|
syl |
|- ( ( ( ph /\ k e. NN0 ) /\ -. k <_ ( ( deg ` G ) - M ) ) -> ( G = 0p \/ ( deg ` G ) < ( k + M ) ) ) |
77 |
3
|
ad2antrr |
|- ( ( ( ph /\ k e. NN0 ) /\ -. k <_ ( ( deg ` G ) - M ) ) -> G e. ( Poly ` ZZ ) ) |
78 |
55
|
adantr |
|- ( ( ( ph /\ k e. NN0 ) /\ -. k <_ ( ( deg ` G ) - M ) ) -> ( k + M ) e. NN0 ) |
79 |
20 21
|
dgrlt |
|- ( ( G e. ( Poly ` ZZ ) /\ ( k + M ) e. NN0 ) -> ( ( G = 0p \/ ( deg ` G ) < ( k + M ) ) <-> ( ( deg ` G ) <_ ( k + M ) /\ ( ( coeff ` G ) ` ( k + M ) ) = 0 ) ) ) |
80 |
77 78 79
|
syl2anc |
|- ( ( ( ph /\ k e. NN0 ) /\ -. k <_ ( ( deg ` G ) - M ) ) -> ( ( G = 0p \/ ( deg ` G ) < ( k + M ) ) <-> ( ( deg ` G ) <_ ( k + M ) /\ ( ( coeff ` G ) ` ( k + M ) ) = 0 ) ) ) |
81 |
76 80
|
mpbid |
|- ( ( ( ph /\ k e. NN0 ) /\ -. k <_ ( ( deg ` G ) - M ) ) -> ( ( deg ` G ) <_ ( k + M ) /\ ( ( coeff ` G ) ` ( k + M ) ) = 0 ) ) |
82 |
81
|
simprd |
|- ( ( ( ph /\ k e. NN0 ) /\ -. k <_ ( ( deg ` G ) - M ) ) -> ( ( coeff ` G ) ` ( k + M ) ) = 0 ) |
83 |
64 82
|
eqtr4d |
|- ( ( ( ph /\ k e. NN0 ) /\ -. k <_ ( ( deg ` G ) - M ) ) -> if ( k <_ ( ( deg ` G ) - M ) , ( ( coeff ` G ) ` ( k + M ) ) , 0 ) = ( ( coeff ` G ) ` ( k + M ) ) ) |
84 |
62 83
|
pm2.61dan |
|- ( ( ph /\ k e. NN0 ) -> if ( k <_ ( ( deg ` G ) - M ) , ( ( coeff ` G ) ` ( k + M ) ) , 0 ) = ( ( coeff ` G ) ` ( k + M ) ) ) |
85 |
84
|
mpteq2dva |
|- ( ph -> ( k e. NN0 |-> if ( k <_ ( ( deg ` G ) - M ) , ( ( coeff ` G ) ` ( k + M ) ) , 0 ) ) = ( k e. NN0 |-> ( ( coeff ` G ) ` ( k + M ) ) ) ) |
86 |
51 11
|
fssd |
|- ( ph -> ( coeff ` G ) : NN0 --> CC ) |
87 |
86
|
adantr |
|- ( ( ph /\ k e. ( 0 ... ( ( deg ` G ) - M ) ) ) -> ( coeff ` G ) : NN0 --> CC ) |
88 |
|
elfznn0 |
|- ( k e. ( 0 ... ( ( deg ` G ) - M ) ) -> k e. NN0 ) |
89 |
88
|
adantl |
|- ( ( ph /\ k e. ( 0 ... ( ( deg ` G ) - M ) ) ) -> k e. NN0 ) |
90 |
35
|
adantr |
|- ( ( ph /\ k e. ( 0 ... ( ( deg ` G ) - M ) ) ) -> M e. NN0 ) |
91 |
89 90
|
nn0addcld |
|- ( ( ph /\ k e. ( 0 ... ( ( deg ` G ) - M ) ) ) -> ( k + M ) e. NN0 ) |
92 |
87 91
|
ffvelrnd |
|- ( ( ph /\ k e. ( 0 ... ( ( deg ` G ) - M ) ) ) -> ( ( coeff ` G ) ` ( k + M ) ) e. CC ) |
93 |
|
eqidd |
|- ( ( ph /\ z e. CC ) -> ( 0 ... ( ( deg ` G ) - M ) ) = ( 0 ... ( ( deg ` G ) - M ) ) ) |
94 |
|
simpl |
|- ( ( ph /\ k e. ( 0 ... ( ( deg ` G ) - M ) ) ) -> ph ) |
95 |
7
|
a1i |
|- ( ph -> I = ( k e. NN0 |-> ( ( coeff ` G ) ` ( k + M ) ) ) ) |
96 |
95 56
|
fvmpt2d |
|- ( ( ph /\ k e. NN0 ) -> ( I ` k ) = ( ( coeff ` G ) ` ( k + M ) ) ) |
97 |
94 89 96
|
syl2anc |
|- ( ( ph /\ k e. ( 0 ... ( ( deg ` G ) - M ) ) ) -> ( I ` k ) = ( ( coeff ` G ) ` ( k + M ) ) ) |
98 |
97
|
adantlr |
|- ( ( ( ph /\ z e. CC ) /\ k e. ( 0 ... ( ( deg ` G ) - M ) ) ) -> ( I ` k ) = ( ( coeff ` G ) ` ( k + M ) ) ) |
99 |
98
|
oveq1d |
|- ( ( ( ph /\ z e. CC ) /\ k e. ( 0 ... ( ( deg ` G ) - M ) ) ) -> ( ( I ` k ) x. ( z ^ k ) ) = ( ( ( coeff ` G ) ` ( k + M ) ) x. ( z ^ k ) ) ) |
100 |
93 99
|
sumeq12rdv |
|- ( ( ph /\ z e. CC ) -> sum_ k e. ( 0 ... ( ( deg ` G ) - M ) ) ( ( I ` k ) x. ( z ^ k ) ) = sum_ k e. ( 0 ... ( ( deg ` G ) - M ) ) ( ( ( coeff ` G ) ` ( k + M ) ) x. ( z ^ k ) ) ) |
101 |
100
|
mpteq2dva |
|- ( ph -> ( z e. CC |-> sum_ k e. ( 0 ... ( ( deg ` G ) - M ) ) ( ( I ` k ) x. ( z ^ k ) ) ) = ( z e. CC |-> sum_ k e. ( 0 ... ( ( deg ` G ) - M ) ) ( ( ( coeff ` G ) ` ( k + M ) ) x. ( z ^ k ) ) ) ) |
102 |
9 101
|
eqtrd |
|- ( ph -> F = ( z e. CC |-> sum_ k e. ( 0 ... ( ( deg ` G ) - M ) ) ( ( ( coeff ` G ) ` ( k + M ) ) x. ( z ^ k ) ) ) ) |
103 |
60 48 92 102
|
coeeq2 |
|- ( ph -> ( coeff ` F ) = ( k e. NN0 |-> if ( k <_ ( ( deg ` G ) - M ) , ( ( coeff ` G ) ` ( k + M ) ) , 0 ) ) ) |
104 |
85 103 95
|
3eqtr4d |
|- ( ph -> ( coeff ` F ) = I ) |
105 |
104
|
fveq1d |
|- ( ph -> ( ( coeff ` F ) ` 0 ) = ( I ` 0 ) ) |
106 |
|
oveq1 |
|- ( k = 0 -> ( k + M ) = ( 0 + M ) ) |
107 |
106
|
adantl |
|- ( ( ph /\ k = 0 ) -> ( k + M ) = ( 0 + M ) ) |
108 |
10 36
|
sselid |
|- ( ph -> M e. CC ) |
109 |
108
|
addid2d |
|- ( ph -> ( 0 + M ) = M ) |
110 |
109
|
adantr |
|- ( ( ph /\ k = 0 ) -> ( 0 + M ) = M ) |
111 |
107 110
|
eqtrd |
|- ( ( ph /\ k = 0 ) -> ( k + M ) = M ) |
112 |
111
|
fveq2d |
|- ( ( ph /\ k = 0 ) -> ( ( coeff ` G ) ` ( k + M ) ) = ( ( coeff ` G ) ` M ) ) |
113 |
|
0nn0 |
|- 0 e. NN0 |
114 |
113
|
a1i |
|- ( ph -> 0 e. NN0 ) |
115 |
51 35
|
ffvelrnd |
|- ( ph -> ( ( coeff ` G ) ` M ) e. ZZ ) |
116 |
95 112 114 115
|
fvmptd |
|- ( ph -> ( I ` 0 ) = ( ( coeff ` G ) ` M ) ) |
117 |
|
eqidd |
|- ( ph -> ( ( coeff ` G ) ` M ) = ( ( coeff ` G ) ` M ) ) |
118 |
105 116 117
|
3eqtrd |
|- ( ph -> ( ( coeff ` F ) ` 0 ) = ( ( coeff ` G ) ` M ) ) |
119 |
38 33
|
eqeltrd |
|- ( ph -> M e. { n e. NN0 | ( ( coeff ` G ) ` n ) =/= 0 } ) |
120 |
|
fveq2 |
|- ( n = M -> ( ( coeff ` G ) ` n ) = ( ( coeff ` G ) ` M ) ) |
121 |
120
|
neeq1d |
|- ( n = M -> ( ( ( coeff ` G ) ` n ) =/= 0 <-> ( ( coeff ` G ) ` M ) =/= 0 ) ) |
122 |
121
|
elrab |
|- ( M e. { n e. NN0 | ( ( coeff ` G ) ` n ) =/= 0 } <-> ( M e. NN0 /\ ( ( coeff ` G ) ` M ) =/= 0 ) ) |
123 |
119 122
|
sylib |
|- ( ph -> ( M e. NN0 /\ ( ( coeff ` G ) ` M ) =/= 0 ) ) |
124 |
123
|
simprd |
|- ( ph -> ( ( coeff ` G ) ` M ) =/= 0 ) |
125 |
118 124
|
eqnetrd |
|- ( ph -> ( ( coeff ` F ) ` 0 ) =/= 0 ) |
126 |
3 49
|
syl |
|- ( ph -> 0 e. ZZ ) |
127 |
|
aasscn |
|- AA C_ CC |
128 |
127 1
|
sselid |
|- ( ph -> A e. CC ) |
129 |
94 128
|
syl |
|- ( ( ph /\ k e. ( 0 ... ( ( deg ` G ) - M ) ) ) -> A e. CC ) |
130 |
129 89
|
expcld |
|- ( ( ph /\ k e. ( 0 ... ( ( deg ` G ) - M ) ) ) -> ( A ^ k ) e. CC ) |
131 |
92 130
|
mulcld |
|- ( ( ph /\ k e. ( 0 ... ( ( deg ` G ) - M ) ) ) -> ( ( ( coeff ` G ) ` ( k + M ) ) x. ( A ^ k ) ) e. CC ) |
132 |
|
fvoveq1 |
|- ( k = ( j - M ) -> ( ( coeff ` G ) ` ( k + M ) ) = ( ( coeff ` G ) ` ( ( j - M ) + M ) ) ) |
133 |
|
oveq2 |
|- ( k = ( j - M ) -> ( A ^ k ) = ( A ^ ( j - M ) ) ) |
134 |
132 133
|
oveq12d |
|- ( k = ( j - M ) -> ( ( ( coeff ` G ) ` ( k + M ) ) x. ( A ^ k ) ) = ( ( ( coeff ` G ) ` ( ( j - M ) + M ) ) x. ( A ^ ( j - M ) ) ) ) |
135 |
36 126 37 131 134
|
fsumshft |
|- ( ph -> sum_ k e. ( 0 ... ( ( deg ` G ) - M ) ) ( ( ( coeff ` G ) ` ( k + M ) ) x. ( A ^ k ) ) = sum_ j e. ( ( 0 + M ) ... ( ( ( deg ` G ) - M ) + M ) ) ( ( ( coeff ` G ) ` ( ( j - M ) + M ) ) x. ( A ^ ( j - M ) ) ) ) |
136 |
10 14
|
sselid |
|- ( ph -> ( deg ` G ) e. CC ) |
137 |
136 108
|
npcand |
|- ( ph -> ( ( ( deg ` G ) - M ) + M ) = ( deg ` G ) ) |
138 |
109 137
|
oveq12d |
|- ( ph -> ( ( 0 + M ) ... ( ( ( deg ` G ) - M ) + M ) ) = ( M ... ( deg ` G ) ) ) |
139 |
138
|
sumeq1d |
|- ( ph -> sum_ j e. ( ( 0 + M ) ... ( ( ( deg ` G ) - M ) + M ) ) ( ( ( coeff ` G ) ` ( ( j - M ) + M ) ) x. ( A ^ ( j - M ) ) ) = sum_ j e. ( M ... ( deg ` G ) ) ( ( ( coeff ` G ) ` ( ( j - M ) + M ) ) x. ( A ^ ( j - M ) ) ) ) |
140 |
|
elfzelz |
|- ( j e. ( M ... ( deg ` G ) ) -> j e. ZZ ) |
141 |
140
|
adantl |
|- ( ( ph /\ j e. ( M ... ( deg ` G ) ) ) -> j e. ZZ ) |
142 |
10 141
|
sselid |
|- ( ( ph /\ j e. ( M ... ( deg ` G ) ) ) -> j e. CC ) |
143 |
108
|
adantr |
|- ( ( ph /\ j e. ( M ... ( deg ` G ) ) ) -> M e. CC ) |
144 |
142 143
|
npcand |
|- ( ( ph /\ j e. ( M ... ( deg ` G ) ) ) -> ( ( j - M ) + M ) = j ) |
145 |
144
|
fveq2d |
|- ( ( ph /\ j e. ( M ... ( deg ` G ) ) ) -> ( ( coeff ` G ) ` ( ( j - M ) + M ) ) = ( ( coeff ` G ) ` j ) ) |
146 |
145
|
oveq1d |
|- ( ( ph /\ j e. ( M ... ( deg ` G ) ) ) -> ( ( ( coeff ` G ) ` ( ( j - M ) + M ) ) x. ( A ^ ( j - M ) ) ) = ( ( ( coeff ` G ) ` j ) x. ( A ^ ( j - M ) ) ) ) |
147 |
128
|
adantr |
|- ( ( ph /\ j e. ( M ... ( deg ` G ) ) ) -> A e. CC ) |
148 |
2
|
adantr |
|- ( ( ph /\ j e. ( M ... ( deg ` G ) ) ) -> A =/= 0 ) |
149 |
36
|
adantr |
|- ( ( ph /\ j e. ( M ... ( deg ` G ) ) ) -> M e. ZZ ) |
150 |
147 148 149 141
|
expsubd |
|- ( ( ph /\ j e. ( M ... ( deg ` G ) ) ) -> ( A ^ ( j - M ) ) = ( ( A ^ j ) / ( A ^ M ) ) ) |
151 |
150
|
oveq2d |
|- ( ( ph /\ j e. ( M ... ( deg ` G ) ) ) -> ( ( ( coeff ` G ) ` j ) x. ( A ^ ( j - M ) ) ) = ( ( ( coeff ` G ) ` j ) x. ( ( A ^ j ) / ( A ^ M ) ) ) ) |
152 |
86
|
adantr |
|- ( ( ph /\ j e. ( M ... ( deg ` G ) ) ) -> ( coeff ` G ) : NN0 --> CC ) |
153 |
|
0red |
|- ( ( ph /\ j e. ( M ... ( deg ` G ) ) ) -> 0 e. RR ) |
154 |
43
|
adantr |
|- ( ( ph /\ j e. ( M ... ( deg ` G ) ) ) -> M e. RR ) |
155 |
141
|
zred |
|- ( ( ph /\ j e. ( M ... ( deg ` G ) ) ) -> j e. RR ) |
156 |
35
|
nn0ge0d |
|- ( ph -> 0 <_ M ) |
157 |
156
|
adantr |
|- ( ( ph /\ j e. ( M ... ( deg ` G ) ) ) -> 0 <_ M ) |
158 |
|
elfzle1 |
|- ( j e. ( M ... ( deg ` G ) ) -> M <_ j ) |
159 |
158
|
adantl |
|- ( ( ph /\ j e. ( M ... ( deg ` G ) ) ) -> M <_ j ) |
160 |
153 154 155 157 159
|
letrd |
|- ( ( ph /\ j e. ( M ... ( deg ` G ) ) ) -> 0 <_ j ) |
161 |
141 160
|
jca |
|- ( ( ph /\ j e. ( M ... ( deg ` G ) ) ) -> ( j e. ZZ /\ 0 <_ j ) ) |
162 |
|
elnn0z |
|- ( j e. NN0 <-> ( j e. ZZ /\ 0 <_ j ) ) |
163 |
161 162
|
sylibr |
|- ( ( ph /\ j e. ( M ... ( deg ` G ) ) ) -> j e. NN0 ) |
164 |
152 163
|
ffvelrnd |
|- ( ( ph /\ j e. ( M ... ( deg ` G ) ) ) -> ( ( coeff ` G ) ` j ) e. CC ) |
165 |
147 163
|
expcld |
|- ( ( ph /\ j e. ( M ... ( deg ` G ) ) ) -> ( A ^ j ) e. CC ) |
166 |
128 35
|
expcld |
|- ( ph -> ( A ^ M ) e. CC ) |
167 |
166
|
adantr |
|- ( ( ph /\ j e. ( M ... ( deg ` G ) ) ) -> ( A ^ M ) e. CC ) |
168 |
147 148 149
|
expne0d |
|- ( ( ph /\ j e. ( M ... ( deg ` G ) ) ) -> ( A ^ M ) =/= 0 ) |
169 |
164 165 167 168
|
divassd |
|- ( ( ph /\ j e. ( M ... ( deg ` G ) ) ) -> ( ( ( ( coeff ` G ) ` j ) x. ( A ^ j ) ) / ( A ^ M ) ) = ( ( ( coeff ` G ) ` j ) x. ( ( A ^ j ) / ( A ^ M ) ) ) ) |
170 |
169
|
eqcomd |
|- ( ( ph /\ j e. ( M ... ( deg ` G ) ) ) -> ( ( ( coeff ` G ) ` j ) x. ( ( A ^ j ) / ( A ^ M ) ) ) = ( ( ( ( coeff ` G ) ` j ) x. ( A ^ j ) ) / ( A ^ M ) ) ) |
171 |
151 170
|
eqtr2d |
|- ( ( ph /\ j e. ( M ... ( deg ` G ) ) ) -> ( ( ( ( coeff ` G ) ` j ) x. ( A ^ j ) ) / ( A ^ M ) ) = ( ( ( coeff ` G ) ` j ) x. ( A ^ ( j - M ) ) ) ) |
172 |
146 171
|
eqtr4d |
|- ( ( ph /\ j e. ( M ... ( deg ` G ) ) ) -> ( ( ( coeff ` G ) ` ( ( j - M ) + M ) ) x. ( A ^ ( j - M ) ) ) = ( ( ( ( coeff ` G ) ` j ) x. ( A ^ j ) ) / ( A ^ M ) ) ) |
173 |
172
|
sumeq2dv |
|- ( ph -> sum_ j e. ( M ... ( deg ` G ) ) ( ( ( coeff ` G ) ` ( ( j - M ) + M ) ) x. ( A ^ ( j - M ) ) ) = sum_ j e. ( M ... ( deg ` G ) ) ( ( ( ( coeff ` G ) ` j ) x. ( A ^ j ) ) / ( A ^ M ) ) ) |
174 |
139 173
|
eqtrd |
|- ( ph -> sum_ j e. ( ( 0 + M ) ... ( ( ( deg ` G ) - M ) + M ) ) ( ( ( coeff ` G ) ` ( ( j - M ) + M ) ) x. ( A ^ ( j - M ) ) ) = sum_ j e. ( M ... ( deg ` G ) ) ( ( ( ( coeff ` G ) ` j ) x. ( A ^ j ) ) / ( A ^ M ) ) ) |
175 |
35 16
|
eleqtrdi |
|- ( ph -> M e. ( ZZ>= ` 0 ) ) |
176 |
|
fzss1 |
|- ( M e. ( ZZ>= ` 0 ) -> ( M ... ( deg ` G ) ) C_ ( 0 ... ( deg ` G ) ) ) |
177 |
175 176
|
syl |
|- ( ph -> ( M ... ( deg ` G ) ) C_ ( 0 ... ( deg ` G ) ) ) |
178 |
164 165
|
mulcld |
|- ( ( ph /\ j e. ( M ... ( deg ` G ) ) ) -> ( ( ( coeff ` G ) ` j ) x. ( A ^ j ) ) e. CC ) |
179 |
178 167 168
|
divcld |
|- ( ( ph /\ j e. ( M ... ( deg ` G ) ) ) -> ( ( ( ( coeff ` G ) ` j ) x. ( A ^ j ) ) / ( A ^ M ) ) e. CC ) |
180 |
36
|
ad2antrr |
|- ( ( ( ph /\ j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) ) /\ -. j < M ) -> M e. ZZ ) |
181 |
14
|
ad2antrr |
|- ( ( ( ph /\ j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) ) /\ -. j < M ) -> ( deg ` G ) e. ZZ ) |
182 |
|
eldifi |
|- ( j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) -> j e. ( 0 ... ( deg ` G ) ) ) |
183 |
182
|
elfzelzd |
|- ( j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) -> j e. ZZ ) |
184 |
183
|
ad2antlr |
|- ( ( ( ph /\ j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) ) /\ -. j < M ) -> j e. ZZ ) |
185 |
|
simpr |
|- ( ( ( ph /\ j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) ) /\ -. j < M ) -> -. j < M ) |
186 |
43
|
ad2antrr |
|- ( ( ( ph /\ j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) ) /\ -. j < M ) -> M e. RR ) |
187 |
184
|
zred |
|- ( ( ( ph /\ j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) ) /\ -. j < M ) -> j e. RR ) |
188 |
186 187
|
lenltd |
|- ( ( ( ph /\ j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) ) /\ -. j < M ) -> ( M <_ j <-> -. j < M ) ) |
189 |
185 188
|
mpbird |
|- ( ( ( ph /\ j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) ) /\ -. j < M ) -> M <_ j ) |
190 |
|
elfzle2 |
|- ( j e. ( 0 ... ( deg ` G ) ) -> j <_ ( deg ` G ) ) |
191 |
182 190
|
syl |
|- ( j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) -> j <_ ( deg ` G ) ) |
192 |
191
|
ad2antlr |
|- ( ( ( ph /\ j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) ) /\ -. j < M ) -> j <_ ( deg ` G ) ) |
193 |
180 181 184 189 192
|
elfzd |
|- ( ( ( ph /\ j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) ) /\ -. j < M ) -> j e. ( M ... ( deg ` G ) ) ) |
194 |
|
eldifn |
|- ( j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) -> -. j e. ( M ... ( deg ` G ) ) ) |
195 |
194
|
ad2antlr |
|- ( ( ( ph /\ j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) ) /\ -. j < M ) -> -. j e. ( M ... ( deg ` G ) ) ) |
196 |
193 195
|
condan |
|- ( ( ph /\ j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) ) -> j < M ) |
197 |
196
|
adantr |
|- ( ( ( ph /\ j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) ) /\ -. ( ( coeff ` G ) ` j ) = 0 ) -> j < M ) |
198 |
6
|
a1i |
|- ( ( ( ph /\ j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) ) /\ -. ( ( coeff ` G ) ` j ) = 0 ) -> M = inf ( { n e. NN0 | ( ( coeff ` G ) ` n ) =/= 0 } , RR , < ) ) |
199 |
17
|
a1i |
|- ( ( ( ph /\ j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) ) /\ -. ( ( coeff ` G ) ` j ) = 0 ) -> { n e. NN0 | ( ( coeff ` G ) ` n ) =/= 0 } C_ ( ZZ>= ` 0 ) ) |
200 |
|
elfznn0 |
|- ( j e. ( 0 ... ( deg ` G ) ) -> j e. NN0 ) |
201 |
182 200
|
syl |
|- ( j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) -> j e. NN0 ) |
202 |
201
|
adantr |
|- ( ( j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) /\ -. ( ( coeff ` G ) ` j ) = 0 ) -> j e. NN0 ) |
203 |
|
neqne |
|- ( -. ( ( coeff ` G ) ` j ) = 0 -> ( ( coeff ` G ) ` j ) =/= 0 ) |
204 |
203
|
adantl |
|- ( ( j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) /\ -. ( ( coeff ` G ) ` j ) = 0 ) -> ( ( coeff ` G ) ` j ) =/= 0 ) |
205 |
202 204
|
jca |
|- ( ( j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) /\ -. ( ( coeff ` G ) ` j ) = 0 ) -> ( j e. NN0 /\ ( ( coeff ` G ) ` j ) =/= 0 ) ) |
206 |
|
fveq2 |
|- ( n = j -> ( ( coeff ` G ) ` n ) = ( ( coeff ` G ) ` j ) ) |
207 |
206
|
neeq1d |
|- ( n = j -> ( ( ( coeff ` G ) ` n ) =/= 0 <-> ( ( coeff ` G ) ` j ) =/= 0 ) ) |
208 |
207
|
elrab |
|- ( j e. { n e. NN0 | ( ( coeff ` G ) ` n ) =/= 0 } <-> ( j e. NN0 /\ ( ( coeff ` G ) ` j ) =/= 0 ) ) |
209 |
205 208
|
sylibr |
|- ( ( j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) /\ -. ( ( coeff ` G ) ` j ) = 0 ) -> j e. { n e. NN0 | ( ( coeff ` G ) ` n ) =/= 0 } ) |
210 |
209
|
adantll |
|- ( ( ( ph /\ j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) ) /\ -. ( ( coeff ` G ) ` j ) = 0 ) -> j e. { n e. NN0 | ( ( coeff ` G ) ` n ) =/= 0 } ) |
211 |
|
infssuzle |
|- ( ( { n e. NN0 | ( ( coeff ` G ) ` n ) =/= 0 } C_ ( ZZ>= ` 0 ) /\ j e. { n e. NN0 | ( ( coeff ` G ) ` n ) =/= 0 } ) -> inf ( { n e. NN0 | ( ( coeff ` G ) ` n ) =/= 0 } , RR , < ) <_ j ) |
212 |
199 210 211
|
syl2anc |
|- ( ( ( ph /\ j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) ) /\ -. ( ( coeff ` G ) ` j ) = 0 ) -> inf ( { n e. NN0 | ( ( coeff ` G ) ` n ) =/= 0 } , RR , < ) <_ j ) |
213 |
198 212
|
eqbrtrd |
|- ( ( ( ph /\ j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) ) /\ -. ( ( coeff ` G ) ` j ) = 0 ) -> M <_ j ) |
214 |
43
|
ad2antrr |
|- ( ( ( ph /\ j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) ) /\ -. ( ( coeff ` G ) ` j ) = 0 ) -> M e. RR ) |
215 |
183
|
zred |
|- ( j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) -> j e. RR ) |
216 |
215
|
ad2antlr |
|- ( ( ( ph /\ j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) ) /\ -. ( ( coeff ` G ) ` j ) = 0 ) -> j e. RR ) |
217 |
214 216
|
lenltd |
|- ( ( ( ph /\ j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) ) /\ -. ( ( coeff ` G ) ` j ) = 0 ) -> ( M <_ j <-> -. j < M ) ) |
218 |
213 217
|
mpbid |
|- ( ( ( ph /\ j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) ) /\ -. ( ( coeff ` G ) ` j ) = 0 ) -> -. j < M ) |
219 |
197 218
|
condan |
|- ( ( ph /\ j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) ) -> ( ( coeff ` G ) ` j ) = 0 ) |
220 |
219
|
oveq1d |
|- ( ( ph /\ j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) ) -> ( ( ( coeff ` G ) ` j ) x. ( A ^ j ) ) = ( 0 x. ( A ^ j ) ) ) |
221 |
128
|
adantr |
|- ( ( ph /\ j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) ) -> A e. CC ) |
222 |
201
|
adantl |
|- ( ( ph /\ j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) ) -> j e. NN0 ) |
223 |
221 222
|
expcld |
|- ( ( ph /\ j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) ) -> ( A ^ j ) e. CC ) |
224 |
223
|
mul02d |
|- ( ( ph /\ j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) ) -> ( 0 x. ( A ^ j ) ) = 0 ) |
225 |
220 224
|
eqtrd |
|- ( ( ph /\ j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) ) -> ( ( ( coeff ` G ) ` j ) x. ( A ^ j ) ) = 0 ) |
226 |
225
|
oveq1d |
|- ( ( ph /\ j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) ) -> ( ( ( ( coeff ` G ) ` j ) x. ( A ^ j ) ) / ( A ^ M ) ) = ( 0 / ( A ^ M ) ) ) |
227 |
128 2 36
|
expne0d |
|- ( ph -> ( A ^ M ) =/= 0 ) |
228 |
166 227
|
div0d |
|- ( ph -> ( 0 / ( A ^ M ) ) = 0 ) |
229 |
228
|
adantr |
|- ( ( ph /\ j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) ) -> ( 0 / ( A ^ M ) ) = 0 ) |
230 |
226 229
|
eqtrd |
|- ( ( ph /\ j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) ) -> ( ( ( ( coeff ` G ) ` j ) x. ( A ^ j ) ) / ( A ^ M ) ) = 0 ) |
231 |
|
fzfid |
|- ( ph -> ( 0 ... ( deg ` G ) ) e. Fin ) |
232 |
177 179 230 231
|
fsumss |
|- ( ph -> sum_ j e. ( M ... ( deg ` G ) ) ( ( ( ( coeff ` G ) ` j ) x. ( A ^ j ) ) / ( A ^ M ) ) = sum_ j e. ( 0 ... ( deg ` G ) ) ( ( ( ( coeff ` G ) ` j ) x. ( A ^ j ) ) / ( A ^ M ) ) ) |
233 |
135 174 232
|
3eqtrd |
|- ( ph -> sum_ k e. ( 0 ... ( ( deg ` G ) - M ) ) ( ( ( coeff ` G ) ` ( k + M ) ) x. ( A ^ k ) ) = sum_ j e. ( 0 ... ( deg ` G ) ) ( ( ( ( coeff ` G ) ` j ) x. ( A ^ j ) ) / ( A ^ M ) ) ) |
234 |
89 56
|
syldan |
|- ( ( ph /\ k e. ( 0 ... ( ( deg ` G ) - M ) ) ) -> ( ( coeff ` G ) ` ( k + M ) ) e. ZZ ) |
235 |
7
|
fvmpt2 |
|- ( ( k e. NN0 /\ ( ( coeff ` G ) ` ( k + M ) ) e. ZZ ) -> ( I ` k ) = ( ( coeff ` G ) ` ( k + M ) ) ) |
236 |
89 234 235
|
syl2anc |
|- ( ( ph /\ k e. ( 0 ... ( ( deg ` G ) - M ) ) ) -> ( I ` k ) = ( ( coeff ` G ) ` ( k + M ) ) ) |
237 |
236
|
adantlr |
|- ( ( ( ph /\ z = A ) /\ k e. ( 0 ... ( ( deg ` G ) - M ) ) ) -> ( I ` k ) = ( ( coeff ` G ) ` ( k + M ) ) ) |
238 |
|
oveq1 |
|- ( z = A -> ( z ^ k ) = ( A ^ k ) ) |
239 |
238
|
ad2antlr |
|- ( ( ( ph /\ z = A ) /\ k e. ( 0 ... ( ( deg ` G ) - M ) ) ) -> ( z ^ k ) = ( A ^ k ) ) |
240 |
237 239
|
oveq12d |
|- ( ( ( ph /\ z = A ) /\ k e. ( 0 ... ( ( deg ` G ) - M ) ) ) -> ( ( I ` k ) x. ( z ^ k ) ) = ( ( ( coeff ` G ) ` ( k + M ) ) x. ( A ^ k ) ) ) |
241 |
240
|
sumeq2dv |
|- ( ( ph /\ z = A ) -> sum_ k e. ( 0 ... ( ( deg ` G ) - M ) ) ( ( I ` k ) x. ( z ^ k ) ) = sum_ k e. ( 0 ... ( ( deg ` G ) - M ) ) ( ( ( coeff ` G ) ` ( k + M ) ) x. ( A ^ k ) ) ) |
242 |
|
fzfid |
|- ( ph -> ( 0 ... ( ( deg ` G ) - M ) ) e. Fin ) |
243 |
242 131
|
fsumcl |
|- ( ph -> sum_ k e. ( 0 ... ( ( deg ` G ) - M ) ) ( ( ( coeff ` G ) ` ( k + M ) ) x. ( A ^ k ) ) e. CC ) |
244 |
9 241 128 243
|
fvmptd |
|- ( ph -> ( F ` A ) = sum_ k e. ( 0 ... ( ( deg ` G ) - M ) ) ( ( ( coeff ` G ) ` ( k + M ) ) x. ( A ^ k ) ) ) |
245 |
21 20
|
coeid2 |
|- ( ( G e. ( Poly ` ZZ ) /\ A e. CC ) -> ( G ` A ) = sum_ j e. ( 0 ... ( deg ` G ) ) ( ( ( coeff ` G ) ` j ) x. ( A ^ j ) ) ) |
246 |
3 128 245
|
syl2anc |
|- ( ph -> ( G ` A ) = sum_ j e. ( 0 ... ( deg ` G ) ) ( ( ( coeff ` G ) ` j ) x. ( A ^ j ) ) ) |
247 |
246
|
oveq1d |
|- ( ph -> ( ( G ` A ) / ( A ^ M ) ) = ( sum_ j e. ( 0 ... ( deg ` G ) ) ( ( ( coeff ` G ) ` j ) x. ( A ^ j ) ) / ( A ^ M ) ) ) |
248 |
86
|
adantr |
|- ( ( ph /\ j e. ( 0 ... ( deg ` G ) ) ) -> ( coeff ` G ) : NN0 --> CC ) |
249 |
200
|
adantl |
|- ( ( ph /\ j e. ( 0 ... ( deg ` G ) ) ) -> j e. NN0 ) |
250 |
248 249
|
ffvelrnd |
|- ( ( ph /\ j e. ( 0 ... ( deg ` G ) ) ) -> ( ( coeff ` G ) ` j ) e. CC ) |
251 |
128
|
adantr |
|- ( ( ph /\ j e. ( 0 ... ( deg ` G ) ) ) -> A e. CC ) |
252 |
251 249
|
expcld |
|- ( ( ph /\ j e. ( 0 ... ( deg ` G ) ) ) -> ( A ^ j ) e. CC ) |
253 |
250 252
|
mulcld |
|- ( ( ph /\ j e. ( 0 ... ( deg ` G ) ) ) -> ( ( ( coeff ` G ) ` j ) x. ( A ^ j ) ) e. CC ) |
254 |
231 166 253 227
|
fsumdivc |
|- ( ph -> ( sum_ j e. ( 0 ... ( deg ` G ) ) ( ( ( coeff ` G ) ` j ) x. ( A ^ j ) ) / ( A ^ M ) ) = sum_ j e. ( 0 ... ( deg ` G ) ) ( ( ( ( coeff ` G ) ` j ) x. ( A ^ j ) ) / ( A ^ M ) ) ) |
255 |
247 254
|
eqtrd |
|- ( ph -> ( ( G ` A ) / ( A ^ M ) ) = sum_ j e. ( 0 ... ( deg ` G ) ) ( ( ( ( coeff ` G ) ` j ) x. ( A ^ j ) ) / ( A ^ M ) ) ) |
256 |
233 244 255
|
3eqtr4d |
|- ( ph -> ( F ` A ) = ( ( G ` A ) / ( A ^ M ) ) ) |
257 |
5
|
oveq1d |
|- ( ph -> ( ( G ` A ) / ( A ^ M ) ) = ( 0 / ( A ^ M ) ) ) |
258 |
256 257 228
|
3eqtrd |
|- ( ph -> ( F ` A ) = 0 ) |
259 |
125 258
|
jca |
|- ( ph -> ( ( ( coeff ` F ) ` 0 ) =/= 0 /\ ( F ` A ) = 0 ) ) |
260 |
|
fveq2 |
|- ( f = F -> ( coeff ` f ) = ( coeff ` F ) ) |
261 |
260
|
fveq1d |
|- ( f = F -> ( ( coeff ` f ) ` 0 ) = ( ( coeff ` F ) ` 0 ) ) |
262 |
261
|
neeq1d |
|- ( f = F -> ( ( ( coeff ` f ) ` 0 ) =/= 0 <-> ( ( coeff ` F ) ` 0 ) =/= 0 ) ) |
263 |
|
fveq1 |
|- ( f = F -> ( f ` A ) = ( F ` A ) ) |
264 |
263
|
eqeq1d |
|- ( f = F -> ( ( f ` A ) = 0 <-> ( F ` A ) = 0 ) ) |
265 |
262 264
|
anbi12d |
|- ( f = F -> ( ( ( ( coeff ` f ) ` 0 ) =/= 0 /\ ( f ` A ) = 0 ) <-> ( ( ( coeff ` F ) ` 0 ) =/= 0 /\ ( F ` A ) = 0 ) ) ) |
266 |
265
|
rspcev |
|- ( ( F e. ( Poly ` ZZ ) /\ ( ( ( coeff ` F ) ` 0 ) =/= 0 /\ ( F ` A ) = 0 ) ) -> E. f e. ( Poly ` ZZ ) ( ( ( coeff ` f ) ` 0 ) =/= 0 /\ ( f ` A ) = 0 ) ) |
267 |
60 259 266
|
syl2anc |
|- ( ph -> E. f e. ( Poly ` ZZ ) ( ( ( coeff ` f ) ` 0 ) =/= 0 /\ ( f ` A ) = 0 ) ) |