Metamath Proof Explorer


Theorem elab

Description: Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of Quine p. 44. (Contributed by NM, 1-Aug-1994) Avoid ax-10 , ax-11 , ax-12 . (Revised by SN, 5-Oct-2024)

Ref Expression
Hypotheses elab.1
|- A e. _V
elab.2
|- ( x = A -> ( ph <-> ps ) )
Assertion elab
|- ( A e. { x | ph } <-> ps )

Proof

Step Hyp Ref Expression
1 elab.1
 |-  A e. _V
2 elab.2
 |-  ( x = A -> ( ph <-> ps ) )
3 2 elabg
 |-  ( A e. _V -> ( A e. { x | ph } <-> ps ) )
4 1 3 ax-mp
 |-  ( A e. { x | ph } <-> ps )