Description: Membership in a class abstraction, with a weaker antecedent than elabg . (Contributed by NM, 29-Aug-2006)
Ref | Expression | ||
---|---|---|---|
Hypothesis | elab3g.1 | |- ( x = A -> ( ph <-> ps ) ) |
|
Assertion | elab3g | |- ( ( ps -> A e. B ) -> ( A e. { x | ph } <-> ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elab3g.1 | |- ( x = A -> ( ph <-> ps ) ) |
|
2 | 1 | elabg | |- ( A e. { x | ph } -> ( A e. { x | ph } <-> ps ) ) |
3 | 2 | ibi | |- ( A e. { x | ph } -> ps ) |
4 | pm2.21 | |- ( -. ps -> ( ps -> A e. { x | ph } ) ) |
|
5 | 3 4 | impbid2 | |- ( -. ps -> ( A e. { x | ph } <-> ps ) ) |
6 | 1 | elabg | |- ( A e. B -> ( A e. { x | ph } <-> ps ) ) |
7 | 5 6 | ja | |- ( ( ps -> A e. B ) -> ( A e. { x | ph } <-> ps ) ) |