Metamath Proof Explorer


Theorem elab3g

Description: Membership in a class abstraction, with a weaker antecedent than elabg . (Contributed by NM, 29-Aug-2006)

Ref Expression
Hypothesis elab3g.1
|- ( x = A -> ( ph <-> ps ) )
Assertion elab3g
|- ( ( ps -> A e. B ) -> ( A e. { x | ph } <-> ps ) )

Proof

Step Hyp Ref Expression
1 elab3g.1
 |-  ( x = A -> ( ph <-> ps ) )
2 1 elabg
 |-  ( A e. { x | ph } -> ( A e. { x | ph } <-> ps ) )
3 2 ibi
 |-  ( A e. { x | ph } -> ps )
4 pm2.21
 |-  ( -. ps -> ( ps -> A e. { x | ph } ) )
5 3 4 impbid2
 |-  ( -. ps -> ( A e. { x | ph } <-> ps ) )
6 1 elabg
 |-  ( A e. B -> ( A e. { x | ph } <-> ps ) )
7 5 6 ja
 |-  ( ( ps -> A e. B ) -> ( A e. { x | ph } <-> ps ) )