Metamath Proof Explorer


Theorem elab3gf

Description: Membership in a class abstraction, with a weaker antecedent than elabgf . (Contributed by NM, 6-Sep-2011)

Ref Expression
Hypotheses elab3gf.1
|- F/_ x A
elab3gf.2
|- F/ x ps
elab3gf.3
|- ( x = A -> ( ph <-> ps ) )
Assertion elab3gf
|- ( ( ps -> A e. B ) -> ( A e. { x | ph } <-> ps ) )

Proof

Step Hyp Ref Expression
1 elab3gf.1
 |-  F/_ x A
2 elab3gf.2
 |-  F/ x ps
3 elab3gf.3
 |-  ( x = A -> ( ph <-> ps ) )
4 1 2 3 elabgf
 |-  ( A e. { x | ph } -> ( A e. { x | ph } <-> ps ) )
5 4 ibi
 |-  ( A e. { x | ph } -> ps )
6 pm2.21
 |-  ( -. ps -> ( ps -> A e. { x | ph } ) )
7 5 6 impbid2
 |-  ( -. ps -> ( A e. { x | ph } <-> ps ) )
8 1 2 3 elabgf
 |-  ( A e. B -> ( A e. { x | ph } <-> ps ) )
9 7 8 ja
 |-  ( ( ps -> A e. B ) -> ( A e. { x | ph } <-> ps ) )