Description: Membership in a class abstraction, with a weaker antecedent than elabgf . (Contributed by NM, 6-Sep-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | elab3gf.1 | |- F/_ x A |
|
elab3gf.2 | |- F/ x ps |
||
elab3gf.3 | |- ( x = A -> ( ph <-> ps ) ) |
||
Assertion | elab3gf | |- ( ( ps -> A e. B ) -> ( A e. { x | ph } <-> ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elab3gf.1 | |- F/_ x A |
|
2 | elab3gf.2 | |- F/ x ps |
|
3 | elab3gf.3 | |- ( x = A -> ( ph <-> ps ) ) |
|
4 | 1 2 3 | elabgf | |- ( A e. { x | ph } -> ( A e. { x | ph } <-> ps ) ) |
5 | 4 | ibi | |- ( A e. { x | ph } -> ps ) |
6 | pm2.21 | |- ( -. ps -> ( ps -> A e. { x | ph } ) ) |
|
7 | 5 6 | impbid2 | |- ( -. ps -> ( A e. { x | ph } <-> ps ) ) |
8 | 1 2 3 | elabgf | |- ( A e. B -> ( A e. { x | ph } <-> ps ) ) |
9 | 7 8 | ja | |- ( ( ps -> A e. B ) -> ( A e. { x | ph } <-> ps ) ) |