Step |
Hyp |
Ref |
Expression |
1 |
|
eleq1 |
|- ( y = A -> ( y e. { x | ph } <-> A e. { x | ph } ) ) |
2 |
|
eqeq2 |
|- ( y = A -> ( x = y <-> x = A ) ) |
3 |
2
|
imbi1d |
|- ( y = A -> ( ( x = y -> ph ) <-> ( x = A -> ph ) ) ) |
4 |
3
|
albidv |
|- ( y = A -> ( A. x ( x = y -> ph ) <-> A. x ( x = A -> ph ) ) ) |
5 |
|
df-clab |
|- ( y e. { x | ph } <-> [ y / x ] ph ) |
6 |
|
sb6 |
|- ( [ y / x ] ph <-> A. x ( x = y -> ph ) ) |
7 |
5 6
|
bitri |
|- ( y e. { x | ph } <-> A. x ( x = y -> ph ) ) |
8 |
1 4 7
|
vtoclbg |
|- ( A e. V -> ( A e. { x | ph } <-> A. x ( x = A -> ph ) ) ) |