| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eleq1 |  |-  ( y = A -> ( y e. { x | ph } <-> A e. { x | ph } ) ) | 
						
							| 2 |  | eqeq2 |  |-  ( y = A -> ( x = y <-> x = A ) ) | 
						
							| 3 | 2 | imbi1d |  |-  ( y = A -> ( ( x = y -> ph ) <-> ( x = A -> ph ) ) ) | 
						
							| 4 | 3 | albidv |  |-  ( y = A -> ( A. x ( x = y -> ph ) <-> A. x ( x = A -> ph ) ) ) | 
						
							| 5 |  | df-clab |  |-  ( y e. { x | ph } <-> [ y / x ] ph ) | 
						
							| 6 |  | sb6 |  |-  ( [ y / x ] ph <-> A. x ( x = y -> ph ) ) | 
						
							| 7 | 5 6 | bitri |  |-  ( y e. { x | ph } <-> A. x ( x = y -> ph ) ) | 
						
							| 8 | 1 4 7 | vtoclbg |  |-  ( A e. V -> ( A e. { x | ph } <-> A. x ( x = A -> ph ) ) ) |