Metamath Proof Explorer


Theorem elabd

Description: Explicit demonstration the class { x | ps } is not empty by the example A . (Contributed by RP, 12-Aug-2020) (Revised by AV, 23-Mar-2024)

Ref Expression
Hypotheses elabd.1
|- ( ph -> A e. V )
elabd.2
|- ( ph -> ch )
elabd.3
|- ( x = A -> ( ps <-> ch ) )
Assertion elabd
|- ( ph -> A e. { x | ps } )

Proof

Step Hyp Ref Expression
1 elabd.1
 |-  ( ph -> A e. V )
2 elabd.2
 |-  ( ph -> ch )
3 elabd.3
 |-  ( x = A -> ( ps <-> ch ) )
4 3 elabg
 |-  ( A e. V -> ( A e. { x | ps } <-> ch ) )
5 1 4 syl
 |-  ( ph -> ( A e. { x | ps } <-> ch ) )
6 2 5 mpbird
 |-  ( ph -> A e. { x | ps } )