Metamath Proof Explorer


Theorem elabd3

Description: Membership in a class abstraction, using implicit substitution. Deduction version of elab . (Contributed by Gino Giotto, 12-Oct-2024)

Ref Expression
Hypotheses elabd3.ex
|- ( ph -> A e. V )
elabd3.is
|- ( ( ph /\ x = A ) -> ( ps <-> ch ) )
Assertion elabd3
|- ( ph -> ( A e. { x | ps } <-> ch ) )

Proof

Step Hyp Ref Expression
1 elabd3.ex
 |-  ( ph -> A e. V )
2 elabd3.is
 |-  ( ( ph /\ x = A ) -> ( ps <-> ch ) )
3 eqidd
 |-  ( ph -> { x | ps } = { x | ps } )
4 1 3 2 elabd2
 |-  ( ph -> ( A e. { x | ps } <-> ch ) )