Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 1-Aug-1994) (Revised by Mario Carneiro, 12-Oct-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | elabf.1 | |- F/ x ps |
|
elabf.2 | |- A e. _V |
||
elabf.3 | |- ( x = A -> ( ph <-> ps ) ) |
||
Assertion | elabf | |- ( A e. { x | ph } <-> ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elabf.1 | |- F/ x ps |
|
2 | elabf.2 | |- A e. _V |
|
3 | elabf.3 | |- ( x = A -> ( ph <-> ps ) ) |
|
4 | nfcv | |- F/_ x A |
|
5 | 4 1 3 | elabgf | |- ( A e. _V -> ( A e. { x | ph } <-> ps ) ) |
6 | 2 5 | ax-mp | |- ( A e. { x | ph } <-> ps ) |