Metamath Proof Explorer


Theorem elabf

Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 1-Aug-1994) (Revised by Mario Carneiro, 12-Oct-2016)

Ref Expression
Hypotheses elabf.1
|- F/ x ps
elabf.2
|- A e. _V
elabf.3
|- ( x = A -> ( ph <-> ps ) )
Assertion elabf
|- ( A e. { x | ph } <-> ps )

Proof

Step Hyp Ref Expression
1 elabf.1
 |-  F/ x ps
2 elabf.2
 |-  A e. _V
3 elabf.3
 |-  ( x = A -> ( ph <-> ps ) )
4 nfcv
 |-  F/_ x A
5 4 1 3 elabgf
 |-  ( A e. _V -> ( A e. { x | ph } <-> ps ) )
6 2 5 ax-mp
 |-  ( A e. { x | ph } <-> ps )