Metamath Proof Explorer


Theorem elabg

Description: Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of Quine p. 44. (Contributed by NM, 14-Apr-1995) Avoid ax-13 . (Revised by SN, 23-Nov-2022) Avoid ax-10 , ax-11 , ax-12 . (Revised by SN, 5-Oct-2024)

Ref Expression
Hypothesis elabg.1
|- ( x = A -> ( ph <-> ps ) )
Assertion elabg
|- ( A e. V -> ( A e. { x | ph } <-> ps ) )

Proof

Step Hyp Ref Expression
1 elabg.1
 |-  ( x = A -> ( ph <-> ps ) )
2 1 ax-gen
 |-  A. x ( x = A -> ( ph <-> ps ) )
3 elabgt
 |-  ( ( A e. V /\ A. x ( x = A -> ( ph <-> ps ) ) ) -> ( A e. { x | ph } <-> ps ) )
4 2 3 mpan2
 |-  ( A e. V -> ( A e. { x | ph } <-> ps ) )