Description: Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of Quine p. 44. This version has bound-variable hypotheses in place of distinct variable restrictions. (Contributed by NM, 21-Sep-2003) (Revised by Mario Carneiro, 12-Oct-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | elabgf.1 | |- F/_ x A |
|
elabgf.2 | |- F/ x ps |
||
elabgf.3 | |- ( x = A -> ( ph <-> ps ) ) |
||
Assertion | elabgf | |- ( A e. B -> ( A e. { x | ph } <-> ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elabgf.1 | |- F/_ x A |
|
2 | elabgf.2 | |- F/ x ps |
|
3 | elabgf.3 | |- ( x = A -> ( ph <-> ps ) ) |
|
4 | nfab1 | |- F/_ x { x | ph } |
|
5 | 1 4 | nfel | |- F/ x A e. { x | ph } |
6 | 5 2 | nfbi | |- F/ x ( A e. { x | ph } <-> ps ) |
7 | eleq1 | |- ( x = A -> ( x e. { x | ph } <-> A e. { x | ph } ) ) |
|
8 | 7 3 | bibi12d | |- ( x = A -> ( ( x e. { x | ph } <-> ph ) <-> ( A e. { x | ph } <-> ps ) ) ) |
9 | abid | |- ( x e. { x | ph } <-> ph ) |
|
10 | 1 6 8 9 | vtoclgf | |- ( A e. B -> ( A e. { x | ph } <-> ps ) ) |