| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elab6g |
|- ( A e. B -> ( A e. { x | ph } <-> A. x ( x = A -> ph ) ) ) |
| 2 |
|
pm5.74 |
|- ( ( x = A -> ( ph <-> ps ) ) <-> ( ( x = A -> ph ) <-> ( x = A -> ps ) ) ) |
| 3 |
2
|
biimpi |
|- ( ( x = A -> ( ph <-> ps ) ) -> ( ( x = A -> ph ) <-> ( x = A -> ps ) ) ) |
| 4 |
3
|
alimi |
|- ( A. x ( x = A -> ( ph <-> ps ) ) -> A. x ( ( x = A -> ph ) <-> ( x = A -> ps ) ) ) |
| 5 |
|
albi |
|- ( A. x ( ( x = A -> ph ) <-> ( x = A -> ps ) ) -> ( A. x ( x = A -> ph ) <-> A. x ( x = A -> ps ) ) ) |
| 6 |
4 5
|
syl |
|- ( A. x ( x = A -> ( ph <-> ps ) ) -> ( A. x ( x = A -> ph ) <-> A. x ( x = A -> ps ) ) ) |
| 7 |
1 6
|
sylan9bb |
|- ( ( A e. B /\ A. x ( x = A -> ( ph <-> ps ) ) ) -> ( A e. { x | ph } <-> A. x ( x = A -> ps ) ) ) |
| 8 |
|
19.23v |
|- ( A. x ( x = A -> ps ) <-> ( E. x x = A -> ps ) ) |
| 9 |
|
elisset |
|- ( A e. B -> E. x x = A ) |
| 10 |
|
pm5.5 |
|- ( E. x x = A -> ( ( E. x x = A -> ps ) <-> ps ) ) |
| 11 |
9 10
|
syl |
|- ( A e. B -> ( ( E. x x = A -> ps ) <-> ps ) ) |
| 12 |
8 11
|
bitrid |
|- ( A e. B -> ( A. x ( x = A -> ps ) <-> ps ) ) |
| 13 |
12
|
adantr |
|- ( ( A e. B /\ A. x ( x = A -> ( ph <-> ps ) ) ) -> ( A. x ( x = A -> ps ) <-> ps ) ) |
| 14 |
7 13
|
bitrd |
|- ( ( A e. B /\ A. x ( x = A -> ( ph <-> ps ) ) ) -> ( A e. { x | ph } <-> ps ) ) |