Step |
Hyp |
Ref |
Expression |
1 |
|
elab6g |
|- ( A e. B -> ( A e. { x | ph } <-> A. x ( x = A -> ph ) ) ) |
2 |
1
|
adantr |
|- ( ( A e. B /\ A. x ( x = A -> ( ph <-> ps ) ) ) -> ( A e. { x | ph } <-> A. x ( x = A -> ph ) ) ) |
3 |
|
elisset |
|- ( A e. B -> E. x x = A ) |
4 |
|
biimp |
|- ( ( ph <-> ps ) -> ( ph -> ps ) ) |
5 |
4
|
imim3i |
|- ( ( x = A -> ( ph <-> ps ) ) -> ( ( x = A -> ph ) -> ( x = A -> ps ) ) ) |
6 |
5
|
al2imi |
|- ( A. x ( x = A -> ( ph <-> ps ) ) -> ( A. x ( x = A -> ph ) -> A. x ( x = A -> ps ) ) ) |
7 |
|
19.23v |
|- ( A. x ( x = A -> ps ) <-> ( E. x x = A -> ps ) ) |
8 |
6 7
|
syl6ib |
|- ( A. x ( x = A -> ( ph <-> ps ) ) -> ( A. x ( x = A -> ph ) -> ( E. x x = A -> ps ) ) ) |
9 |
8
|
com3r |
|- ( E. x x = A -> ( A. x ( x = A -> ( ph <-> ps ) ) -> ( A. x ( x = A -> ph ) -> ps ) ) ) |
10 |
|
biimpr |
|- ( ( ph <-> ps ) -> ( ps -> ph ) ) |
11 |
10
|
imim2i |
|- ( ( x = A -> ( ph <-> ps ) ) -> ( x = A -> ( ps -> ph ) ) ) |
12 |
11
|
alimi |
|- ( A. x ( x = A -> ( ph <-> ps ) ) -> A. x ( x = A -> ( ps -> ph ) ) ) |
13 |
|
bi2.04 |
|- ( ( x = A -> ( ps -> ph ) ) <-> ( ps -> ( x = A -> ph ) ) ) |
14 |
13
|
albii |
|- ( A. x ( x = A -> ( ps -> ph ) ) <-> A. x ( ps -> ( x = A -> ph ) ) ) |
15 |
|
19.21v |
|- ( A. x ( ps -> ( x = A -> ph ) ) <-> ( ps -> A. x ( x = A -> ph ) ) ) |
16 |
14 15
|
sylbb |
|- ( A. x ( x = A -> ( ps -> ph ) ) -> ( ps -> A. x ( x = A -> ph ) ) ) |
17 |
12 16
|
syl |
|- ( A. x ( x = A -> ( ph <-> ps ) ) -> ( ps -> A. x ( x = A -> ph ) ) ) |
18 |
17
|
a1i |
|- ( E. x x = A -> ( A. x ( x = A -> ( ph <-> ps ) ) -> ( ps -> A. x ( x = A -> ph ) ) ) ) |
19 |
9 18
|
impbidd |
|- ( E. x x = A -> ( A. x ( x = A -> ( ph <-> ps ) ) -> ( A. x ( x = A -> ph ) <-> ps ) ) ) |
20 |
3 19
|
syl |
|- ( A e. B -> ( A. x ( x = A -> ( ph <-> ps ) ) -> ( A. x ( x = A -> ph ) <-> ps ) ) ) |
21 |
20
|
imp |
|- ( ( A e. B /\ A. x ( x = A -> ( ph <-> ps ) ) ) -> ( A. x ( x = A -> ph ) <-> ps ) ) |
22 |
2 21
|
bitrd |
|- ( ( A e. B /\ A. x ( x = A -> ( ph <-> ps ) ) ) -> ( A e. { x | ph } <-> ps ) ) |