Step |
Hyp |
Ref |
Expression |
1 |
|
nfcv |
|- F/_ x A |
2 |
|
nfab1 |
|- F/_ x { x | ph } |
3 |
2
|
nfel2 |
|- F/ x A e. { x | ph } |
4 |
|
nfv |
|- F/ x ps |
5 |
3 4
|
nfbi |
|- F/ x ( A e. { x | ph } <-> ps ) |
6 |
|
pm5.5 |
|- ( x = A -> ( ( x = A -> ( A e. { x | ph } <-> ps ) ) <-> ( A e. { x | ph } <-> ps ) ) ) |
7 |
1 5 6
|
spcgf |
|- ( A e. B -> ( A. x ( x = A -> ( A e. { x | ph } <-> ps ) ) -> ( A e. { x | ph } <-> ps ) ) ) |
8 |
|
abid |
|- ( x e. { x | ph } <-> ph ) |
9 |
|
eleq1 |
|- ( x = A -> ( x e. { x | ph } <-> A e. { x | ph } ) ) |
10 |
8 9
|
bitr3id |
|- ( x = A -> ( ph <-> A e. { x | ph } ) ) |
11 |
10
|
bibi1d |
|- ( x = A -> ( ( ph <-> ps ) <-> ( A e. { x | ph } <-> ps ) ) ) |
12 |
11
|
biimpd |
|- ( x = A -> ( ( ph <-> ps ) -> ( A e. { x | ph } <-> ps ) ) ) |
13 |
12
|
a2i |
|- ( ( x = A -> ( ph <-> ps ) ) -> ( x = A -> ( A e. { x | ph } <-> ps ) ) ) |
14 |
13
|
alimi |
|- ( A. x ( x = A -> ( ph <-> ps ) ) -> A. x ( x = A -> ( A e. { x | ph } <-> ps ) ) ) |
15 |
7 14
|
impel |
|- ( ( A e. B /\ A. x ( x = A -> ( ph <-> ps ) ) ) -> ( A e. { x | ph } <-> ps ) ) |