| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tru |  |-  T. | 
						
							| 2 |  | csbeq1a |  |-  ( x = z -> B = [_ z / x ]_ B ) | 
						
							| 3 | 2 | equcoms |  |-  ( z = x -> B = [_ z / x ]_ B ) | 
						
							| 4 |  | trud |  |-  ( z = x -> T. ) | 
						
							| 5 | 3 4 | 2thd |  |-  ( z = x -> ( B = [_ z / x ]_ B <-> T. ) ) | 
						
							| 6 | 5 | rspcev |  |-  ( ( x e. A /\ T. ) -> E. z e. A B = [_ z / x ]_ B ) | 
						
							| 7 | 1 6 | mpan2 |  |-  ( x e. A -> E. z e. A B = [_ z / x ]_ B ) | 
						
							| 8 | 7 | adantr |  |-  ( ( x e. A /\ B e. V ) -> E. z e. A B = [_ z / x ]_ B ) | 
						
							| 9 |  | eqeq1 |  |-  ( y = B -> ( y = [_ z / x ]_ B <-> B = [_ z / x ]_ B ) ) | 
						
							| 10 | 9 | rexbidv |  |-  ( y = B -> ( E. z e. A y = [_ z / x ]_ B <-> E. z e. A B = [_ z / x ]_ B ) ) | 
						
							| 11 | 10 | elabg |  |-  ( B e. V -> ( B e. { y | E. z e. A y = [_ z / x ]_ B } <-> E. z e. A B = [_ z / x ]_ B ) ) | 
						
							| 12 | 11 | adantl |  |-  ( ( x e. A /\ B e. V ) -> ( B e. { y | E. z e. A y = [_ z / x ]_ B } <-> E. z e. A B = [_ z / x ]_ B ) ) | 
						
							| 13 | 8 12 | mpbird |  |-  ( ( x e. A /\ B e. V ) -> B e. { y | E. z e. A y = [_ z / x ]_ B } ) | 
						
							| 14 |  | nfv |  |-  F/ z y = B | 
						
							| 15 |  | nfcsb1v |  |-  F/_ x [_ z / x ]_ B | 
						
							| 16 | 15 | nfeq2 |  |-  F/ x y = [_ z / x ]_ B | 
						
							| 17 | 2 | eqeq2d |  |-  ( x = z -> ( y = B <-> y = [_ z / x ]_ B ) ) | 
						
							| 18 | 14 16 17 | cbvrexw |  |-  ( E. x e. A y = B <-> E. z e. A y = [_ z / x ]_ B ) | 
						
							| 19 | 18 | abbii |  |-  { y | E. x e. A y = B } = { y | E. z e. A y = [_ z / x ]_ B } | 
						
							| 20 | 13 19 | eleqtrrdi |  |-  ( ( x e. A /\ B e. V ) -> B e. { y | E. x e. A y = B } ) |