Metamath Proof Explorer


Theorem elabreximdv

Description: Class substitution in an image set. (Contributed by Thierry Arnoux, 30-Dec-2016)

Ref Expression
Hypotheses elabreximdv.1
|- ( A = B -> ( ch <-> ps ) )
elabreximdv.2
|- ( ph -> A e. V )
elabreximdv.3
|- ( ( ph /\ x e. C ) -> ps )
Assertion elabreximdv
|- ( ( ph /\ A e. { y | E. x e. C y = B } ) -> ch )

Proof

Step Hyp Ref Expression
1 elabreximdv.1
 |-  ( A = B -> ( ch <-> ps ) )
2 elabreximdv.2
 |-  ( ph -> A e. V )
3 elabreximdv.3
 |-  ( ( ph /\ x e. C ) -> ps )
4 nfv
 |-  F/ x ph
5 nfv
 |-  F/ x ch
6 4 5 1 2 3 elabreximd
 |-  ( ( ph /\ A e. { y | E. x e. C y = B } ) -> ch )