| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ela |
|- ( A e. HAtoms <-> ( A e. CH /\ 0H |
| 2 |
|
h0elch |
|- 0H e. CH |
| 3 |
|
cvbr2 |
|- ( ( 0H e. CH /\ A e. CH ) -> ( 0H ( 0H C. A /\ A. x e. CH ( ( 0H C. x /\ x C_ A ) -> x = A ) ) ) ) |
| 4 |
2 3
|
mpan |
|- ( A e. CH -> ( 0H ( 0H C. A /\ A. x e. CH ( ( 0H C. x /\ x C_ A ) -> x = A ) ) ) ) |
| 5 |
|
ch0pss |
|- ( A e. CH -> ( 0H C. A <-> A =/= 0H ) ) |
| 6 |
|
ch0pss |
|- ( x e. CH -> ( 0H C. x <-> x =/= 0H ) ) |
| 7 |
6
|
imbi1d |
|- ( x e. CH -> ( ( 0H C. x -> x = A ) <-> ( x =/= 0H -> x = A ) ) ) |
| 8 |
7
|
imbi2d |
|- ( x e. CH -> ( ( x C_ A -> ( 0H C. x -> x = A ) ) <-> ( x C_ A -> ( x =/= 0H -> x = A ) ) ) ) |
| 9 |
|
impexp |
|- ( ( ( 0H C. x /\ x C_ A ) -> x = A ) <-> ( 0H C. x -> ( x C_ A -> x = A ) ) ) |
| 10 |
|
bi2.04 |
|- ( ( 0H C. x -> ( x C_ A -> x = A ) ) <-> ( x C_ A -> ( 0H C. x -> x = A ) ) ) |
| 11 |
9 10
|
bitri |
|- ( ( ( 0H C. x /\ x C_ A ) -> x = A ) <-> ( x C_ A -> ( 0H C. x -> x = A ) ) ) |
| 12 |
|
orcom |
|- ( ( x = A \/ x = 0H ) <-> ( x = 0H \/ x = A ) ) |
| 13 |
|
neor |
|- ( ( x = 0H \/ x = A ) <-> ( x =/= 0H -> x = A ) ) |
| 14 |
12 13
|
bitri |
|- ( ( x = A \/ x = 0H ) <-> ( x =/= 0H -> x = A ) ) |
| 15 |
14
|
imbi2i |
|- ( ( x C_ A -> ( x = A \/ x = 0H ) ) <-> ( x C_ A -> ( x =/= 0H -> x = A ) ) ) |
| 16 |
8 11 15
|
3bitr4g |
|- ( x e. CH -> ( ( ( 0H C. x /\ x C_ A ) -> x = A ) <-> ( x C_ A -> ( x = A \/ x = 0H ) ) ) ) |
| 17 |
16
|
ralbiia |
|- ( A. x e. CH ( ( 0H C. x /\ x C_ A ) -> x = A ) <-> A. x e. CH ( x C_ A -> ( x = A \/ x = 0H ) ) ) |
| 18 |
17
|
a1i |
|- ( A e. CH -> ( A. x e. CH ( ( 0H C. x /\ x C_ A ) -> x = A ) <-> A. x e. CH ( x C_ A -> ( x = A \/ x = 0H ) ) ) ) |
| 19 |
5 18
|
anbi12d |
|- ( A e. CH -> ( ( 0H C. A /\ A. x e. CH ( ( 0H C. x /\ x C_ A ) -> x = A ) ) <-> ( A =/= 0H /\ A. x e. CH ( x C_ A -> ( x = A \/ x = 0H ) ) ) ) ) |
| 20 |
4 19
|
bitr2d |
|- ( A e. CH -> ( ( A =/= 0H /\ A. x e. CH ( x C_ A -> ( x = A \/ x = 0H ) ) ) <-> 0H |
| 21 |
20
|
pm5.32i |
|- ( ( A e. CH /\ ( A =/= 0H /\ A. x e. CH ( x C_ A -> ( x = A \/ x = 0H ) ) ) ) <-> ( A e. CH /\ 0H |
| 22 |
1 21
|
bitr4i |
|- ( A e. HAtoms <-> ( A e. CH /\ ( A =/= 0H /\ A. x e. CH ( x C_ A -> ( x = A \/ x = 0H ) ) ) ) ) |