Metamath Proof Explorer


Theorem elbasfv

Description: Utility theorem: reverse closure for any structure defined as a function. (Contributed by Stefan O'Rear, 24-Aug-2015)

Ref Expression
Hypotheses elbasfv.s
|- S = ( F ` Z )
elbasfv.b
|- B = ( Base ` S )
Assertion elbasfv
|- ( X e. B -> Z e. _V )

Proof

Step Hyp Ref Expression
1 elbasfv.s
 |-  S = ( F ` Z )
2 elbasfv.b
 |-  B = ( Base ` S )
3 n0i
 |-  ( X e. B -> -. B = (/) )
4 fvprc
 |-  ( -. Z e. _V -> ( F ` Z ) = (/) )
5 1 4 eqtrid
 |-  ( -. Z e. _V -> S = (/) )
6 5 fveq2d
 |-  ( -. Z e. _V -> ( Base ` S ) = ( Base ` (/) ) )
7 base0
 |-  (/) = ( Base ` (/) )
8 6 2 7 3eqtr4g
 |-  ( -. Z e. _V -> B = (/) )
9 3 8 nsyl2
 |-  ( X e. B -> Z e. _V )