Description: Utility theorem: reverse closure for any structure defined as a function. (Contributed by Stefan O'Rear, 24-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elbasfv.s | |- S = ( F ` Z ) |
|
| elbasfv.b | |- B = ( Base ` S ) |
||
| Assertion | elbasfv | |- ( X e. B -> Z e. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elbasfv.s | |- S = ( F ` Z ) |
|
| 2 | elbasfv.b | |- B = ( Base ` S ) |
|
| 3 | n0i | |- ( X e. B -> -. B = (/) ) |
|
| 4 | fvprc | |- ( -. Z e. _V -> ( F ` Z ) = (/) ) |
|
| 5 | 1 4 | eqtrid | |- ( -. Z e. _V -> S = (/) ) |
| 6 | 5 | fveq2d | |- ( -. Z e. _V -> ( Base ` S ) = ( Base ` (/) ) ) |
| 7 | base0 | |- (/) = ( Base ` (/) ) |
|
| 8 | 6 2 7 | 3eqtr4g | |- ( -. Z e. _V -> B = (/) ) |
| 9 | 3 8 | nsyl2 | |- ( X e. B -> Z e. _V ) |