Description: Utility theorem: reverse closure for any structure defined as a two-argument function. (Contributed by Mario Carneiro, 3-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | elbasov.o | |- Rel dom O |
|
elbasov.s | |- S = ( X O Y ) |
||
elbasov.b | |- B = ( Base ` S ) |
||
Assertion | elbasov | |- ( A e. B -> ( X e. _V /\ Y e. _V ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elbasov.o | |- Rel dom O |
|
2 | elbasov.s | |- S = ( X O Y ) |
|
3 | elbasov.b | |- B = ( Base ` S ) |
|
4 | n0i | |- ( A e. B -> -. B = (/) ) |
|
5 | 1 | ovprc | |- ( -. ( X e. _V /\ Y e. _V ) -> ( X O Y ) = (/) ) |
6 | 2 5 | eqtrid | |- ( -. ( X e. _V /\ Y e. _V ) -> S = (/) ) |
7 | 6 | fveq2d | |- ( -. ( X e. _V /\ Y e. _V ) -> ( Base ` S ) = ( Base ` (/) ) ) |
8 | base0 | |- (/) = ( Base ` (/) ) |
|
9 | 7 3 8 | 3eqtr4g | |- ( -. ( X e. _V /\ Y e. _V ) -> B = (/) ) |
10 | 4 9 | nsyl2 | |- ( A e. B -> ( X e. _V /\ Y e. _V ) ) |