Metamath Proof Explorer


Theorem elbasov

Description: Utility theorem: reverse closure for any structure defined as a two-argument function. (Contributed by Mario Carneiro, 3-Oct-2015)

Ref Expression
Hypotheses elbasov.o
|- Rel dom O
elbasov.s
|- S = ( X O Y )
elbasov.b
|- B = ( Base ` S )
Assertion elbasov
|- ( A e. B -> ( X e. _V /\ Y e. _V ) )

Proof

Step Hyp Ref Expression
1 elbasov.o
 |-  Rel dom O
2 elbasov.s
 |-  S = ( X O Y )
3 elbasov.b
 |-  B = ( Base ` S )
4 n0i
 |-  ( A e. B -> -. B = (/) )
5 1 ovprc
 |-  ( -. ( X e. _V /\ Y e. _V ) -> ( X O Y ) = (/) )
6 2 5 eqtrid
 |-  ( -. ( X e. _V /\ Y e. _V ) -> S = (/) )
7 6 fveq2d
 |-  ( -. ( X e. _V /\ Y e. _V ) -> ( Base ` S ) = ( Base ` (/) ) )
8 base0
 |-  (/) = ( Base ` (/) )
9 7 3 8 3eqtr4g
 |-  ( -. ( X e. _V /\ Y e. _V ) -> B = (/) )
10 4 9 nsyl2
 |-  ( A e. B -> ( X e. _V /\ Y e. _V ) )