Metamath Proof Explorer


Theorem elbdop

Description: Property defining a bounded linear Hilbert space operator. (Contributed by NM, 18-Jan-2006) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)

Ref Expression
Assertion elbdop
|- ( T e. BndLinOp <-> ( T e. LinOp /\ ( normop ` T ) < +oo ) )

Proof

Step Hyp Ref Expression
1 fveq2
 |-  ( t = T -> ( normop ` t ) = ( normop ` T ) )
2 1 breq1d
 |-  ( t = T -> ( ( normop ` t ) < +oo <-> ( normop ` T ) < +oo ) )
3 df-bdop
 |-  BndLinOp = { t e. LinOp | ( normop ` t ) < +oo }
4 2 3 elrab2
 |-  ( T e. BndLinOp <-> ( T e. LinOp /\ ( normop ` T ) < +oo ) )