Metamath Proof Explorer


Theorem elbdop2

Description: Property defining a bounded linear Hilbert space operator. (Contributed by NM, 14-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion elbdop2
|- ( T e. BndLinOp <-> ( T e. LinOp /\ ( normop ` T ) e. RR ) )

Proof

Step Hyp Ref Expression
1 elbdop
 |-  ( T e. BndLinOp <-> ( T e. LinOp /\ ( normop ` T ) < +oo ) )
2 lnopf
 |-  ( T e. LinOp -> T : ~H --> ~H )
3 nmopreltpnf
 |-  ( T : ~H --> ~H -> ( ( normop ` T ) e. RR <-> ( normop ` T ) < +oo ) )
4 2 3 syl
 |-  ( T e. LinOp -> ( ( normop ` T ) e. RR <-> ( normop ` T ) < +oo ) )
5 4 pm5.32i
 |-  ( ( T e. LinOp /\ ( normop ` T ) e. RR ) <-> ( T e. LinOp /\ ( normop ` T ) < +oo ) )
6 1 5 bitr4i
 |-  ( T e. BndLinOp <-> ( T e. LinOp /\ ( normop ` T ) e. RR ) )