Metamath Proof Explorer


Theorem elbl2

Description: Membership in a ball. (Contributed by NM, 9-Mar-2007)

Ref Expression
Assertion elbl2
|- ( ( ( D e. ( *Met ` X ) /\ R e. RR* ) /\ ( P e. X /\ A e. X ) ) -> ( A e. ( P ( ball ` D ) R ) <-> ( P D A ) < R ) )

Proof

Step Hyp Ref Expression
1 simprr
 |-  ( ( ( D e. ( *Met ` X ) /\ R e. RR* ) /\ ( P e. X /\ A e. X ) ) -> A e. X )
2 elbl
 |-  ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> ( A e. ( P ( ball ` D ) R ) <-> ( A e. X /\ ( P D A ) < R ) ) )
3 2 3expa
 |-  ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ R e. RR* ) -> ( A e. ( P ( ball ` D ) R ) <-> ( A e. X /\ ( P D A ) < R ) ) )
4 3 an32s
 |-  ( ( ( D e. ( *Met ` X ) /\ R e. RR* ) /\ P e. X ) -> ( A e. ( P ( ball ` D ) R ) <-> ( A e. X /\ ( P D A ) < R ) ) )
5 4 adantrr
 |-  ( ( ( D e. ( *Met ` X ) /\ R e. RR* ) /\ ( P e. X /\ A e. X ) ) -> ( A e. ( P ( ball ` D ) R ) <-> ( A e. X /\ ( P D A ) < R ) ) )
6 1 5 mpbirand
 |-  ( ( ( D e. ( *Met ` X ) /\ R e. RR* ) /\ ( P e. X /\ A e. X ) ) -> ( A e. ( P ( ball ` D ) R ) <-> ( P D A ) < R ) )