Step |
Hyp |
Ref |
Expression |
1 |
|
elbl2 |
|- ( ( ( D e. ( *Met ` X ) /\ R e. RR* ) /\ ( P e. X /\ A e. X ) ) -> ( A e. ( P ( ball ` D ) R ) <-> ( P D A ) < R ) ) |
2 |
|
xmetsym |
|- ( ( D e. ( *Met ` X ) /\ P e. X /\ A e. X ) -> ( P D A ) = ( A D P ) ) |
3 |
2
|
3expb |
|- ( ( D e. ( *Met ` X ) /\ ( P e. X /\ A e. X ) ) -> ( P D A ) = ( A D P ) ) |
4 |
3
|
adantlr |
|- ( ( ( D e. ( *Met ` X ) /\ R e. RR* ) /\ ( P e. X /\ A e. X ) ) -> ( P D A ) = ( A D P ) ) |
5 |
4
|
breq1d |
|- ( ( ( D e. ( *Met ` X ) /\ R e. RR* ) /\ ( P e. X /\ A e. X ) ) -> ( ( P D A ) < R <-> ( A D P ) < R ) ) |
6 |
1 5
|
bitrd |
|- ( ( ( D e. ( *Met ` X ) /\ R e. RR* ) /\ ( P e. X /\ A e. X ) ) -> ( A e. ( P ( ball ` D ) R ) <-> ( A D P ) < R ) ) |