| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clscld.1 |
|- X = U. J |
| 2 |
1
|
cmclsopn |
|- ( ( J e. Top /\ S C_ X ) -> ( X \ ( ( cls ` J ) ` S ) ) e. J ) |
| 3 |
2
|
3adant3 |
|- ( ( J e. Top /\ S C_ X /\ P e. X ) -> ( X \ ( ( cls ` J ) ` S ) ) e. J ) |
| 4 |
3
|
adantr |
|- ( ( ( J e. Top /\ S C_ X /\ P e. X ) /\ -. P e. ( ( cls ` J ) ` S ) ) -> ( X \ ( ( cls ` J ) ` S ) ) e. J ) |
| 5 |
|
eldif |
|- ( P e. ( X \ ( ( cls ` J ) ` S ) ) <-> ( P e. X /\ -. P e. ( ( cls ` J ) ` S ) ) ) |
| 6 |
5
|
biimpri |
|- ( ( P e. X /\ -. P e. ( ( cls ` J ) ` S ) ) -> P e. ( X \ ( ( cls ` J ) ` S ) ) ) |
| 7 |
6
|
3ad2antl3 |
|- ( ( ( J e. Top /\ S C_ X /\ P e. X ) /\ -. P e. ( ( cls ` J ) ` S ) ) -> P e. ( X \ ( ( cls ` J ) ` S ) ) ) |
| 8 |
|
simpr |
|- ( ( J e. Top /\ S C_ X ) -> S C_ X ) |
| 9 |
1
|
sscls |
|- ( ( J e. Top /\ S C_ X ) -> S C_ ( ( cls ` J ) ` S ) ) |
| 10 |
8 9
|
ssind |
|- ( ( J e. Top /\ S C_ X ) -> S C_ ( X i^i ( ( cls ` J ) ` S ) ) ) |
| 11 |
|
dfin4 |
|- ( X i^i ( ( cls ` J ) ` S ) ) = ( X \ ( X \ ( ( cls ` J ) ` S ) ) ) |
| 12 |
10 11
|
sseqtrdi |
|- ( ( J e. Top /\ S C_ X ) -> S C_ ( X \ ( X \ ( ( cls ` J ) ` S ) ) ) ) |
| 13 |
|
reldisj |
|- ( S C_ X -> ( ( S i^i ( X \ ( ( cls ` J ) ` S ) ) ) = (/) <-> S C_ ( X \ ( X \ ( ( cls ` J ) ` S ) ) ) ) ) |
| 14 |
13
|
adantl |
|- ( ( J e. Top /\ S C_ X ) -> ( ( S i^i ( X \ ( ( cls ` J ) ` S ) ) ) = (/) <-> S C_ ( X \ ( X \ ( ( cls ` J ) ` S ) ) ) ) ) |
| 15 |
12 14
|
mpbird |
|- ( ( J e. Top /\ S C_ X ) -> ( S i^i ( X \ ( ( cls ` J ) ` S ) ) ) = (/) ) |
| 16 |
|
nne |
|- ( -. ( ( X \ ( ( cls ` J ) ` S ) ) i^i S ) =/= (/) <-> ( ( X \ ( ( cls ` J ) ` S ) ) i^i S ) = (/) ) |
| 17 |
|
incom |
|- ( ( X \ ( ( cls ` J ) ` S ) ) i^i S ) = ( S i^i ( X \ ( ( cls ` J ) ` S ) ) ) |
| 18 |
17
|
eqeq1i |
|- ( ( ( X \ ( ( cls ` J ) ` S ) ) i^i S ) = (/) <-> ( S i^i ( X \ ( ( cls ` J ) ` S ) ) ) = (/) ) |
| 19 |
16 18
|
bitri |
|- ( -. ( ( X \ ( ( cls ` J ) ` S ) ) i^i S ) =/= (/) <-> ( S i^i ( X \ ( ( cls ` J ) ` S ) ) ) = (/) ) |
| 20 |
15 19
|
sylibr |
|- ( ( J e. Top /\ S C_ X ) -> -. ( ( X \ ( ( cls ` J ) ` S ) ) i^i S ) =/= (/) ) |
| 21 |
20
|
3adant3 |
|- ( ( J e. Top /\ S C_ X /\ P e. X ) -> -. ( ( X \ ( ( cls ` J ) ` S ) ) i^i S ) =/= (/) ) |
| 22 |
21
|
adantr |
|- ( ( ( J e. Top /\ S C_ X /\ P e. X ) /\ -. P e. ( ( cls ` J ) ` S ) ) -> -. ( ( X \ ( ( cls ` J ) ` S ) ) i^i S ) =/= (/) ) |
| 23 |
|
eleq2 |
|- ( x = ( X \ ( ( cls ` J ) ` S ) ) -> ( P e. x <-> P e. ( X \ ( ( cls ` J ) ` S ) ) ) ) |
| 24 |
|
ineq1 |
|- ( x = ( X \ ( ( cls ` J ) ` S ) ) -> ( x i^i S ) = ( ( X \ ( ( cls ` J ) ` S ) ) i^i S ) ) |
| 25 |
24
|
neeq1d |
|- ( x = ( X \ ( ( cls ` J ) ` S ) ) -> ( ( x i^i S ) =/= (/) <-> ( ( X \ ( ( cls ` J ) ` S ) ) i^i S ) =/= (/) ) ) |
| 26 |
25
|
notbid |
|- ( x = ( X \ ( ( cls ` J ) ` S ) ) -> ( -. ( x i^i S ) =/= (/) <-> -. ( ( X \ ( ( cls ` J ) ` S ) ) i^i S ) =/= (/) ) ) |
| 27 |
23 26
|
anbi12d |
|- ( x = ( X \ ( ( cls ` J ) ` S ) ) -> ( ( P e. x /\ -. ( x i^i S ) =/= (/) ) <-> ( P e. ( X \ ( ( cls ` J ) ` S ) ) /\ -. ( ( X \ ( ( cls ` J ) ` S ) ) i^i S ) =/= (/) ) ) ) |
| 28 |
27
|
rspcev |
|- ( ( ( X \ ( ( cls ` J ) ` S ) ) e. J /\ ( P e. ( X \ ( ( cls ` J ) ` S ) ) /\ -. ( ( X \ ( ( cls ` J ) ` S ) ) i^i S ) =/= (/) ) ) -> E. x e. J ( P e. x /\ -. ( x i^i S ) =/= (/) ) ) |
| 29 |
4 7 22 28
|
syl12anc |
|- ( ( ( J e. Top /\ S C_ X /\ P e. X ) /\ -. P e. ( ( cls ` J ) ` S ) ) -> E. x e. J ( P e. x /\ -. ( x i^i S ) =/= (/) ) ) |
| 30 |
|
incom |
|- ( S i^i x ) = ( x i^i S ) |
| 31 |
30
|
eqeq1i |
|- ( ( S i^i x ) = (/) <-> ( x i^i S ) = (/) ) |
| 32 |
|
df-ne |
|- ( ( x i^i S ) =/= (/) <-> -. ( x i^i S ) = (/) ) |
| 33 |
32
|
con2bii |
|- ( ( x i^i S ) = (/) <-> -. ( x i^i S ) =/= (/) ) |
| 34 |
31 33
|
bitri |
|- ( ( S i^i x ) = (/) <-> -. ( x i^i S ) =/= (/) ) |
| 35 |
1
|
opncld |
|- ( ( J e. Top /\ x e. J ) -> ( X \ x ) e. ( Clsd ` J ) ) |
| 36 |
35
|
adantlr |
|- ( ( ( J e. Top /\ S C_ X ) /\ x e. J ) -> ( X \ x ) e. ( Clsd ` J ) ) |
| 37 |
|
reldisj |
|- ( S C_ X -> ( ( S i^i x ) = (/) <-> S C_ ( X \ x ) ) ) |
| 38 |
37
|
biimpa |
|- ( ( S C_ X /\ ( S i^i x ) = (/) ) -> S C_ ( X \ x ) ) |
| 39 |
38
|
ad4ant24 |
|- ( ( ( ( J e. Top /\ S C_ X ) /\ x e. J ) /\ ( S i^i x ) = (/) ) -> S C_ ( X \ x ) ) |
| 40 |
1
|
clsss2 |
|- ( ( ( X \ x ) e. ( Clsd ` J ) /\ S C_ ( X \ x ) ) -> ( ( cls ` J ) ` S ) C_ ( X \ x ) ) |
| 41 |
36 39 40
|
syl2an2r |
|- ( ( ( ( J e. Top /\ S C_ X ) /\ x e. J ) /\ ( S i^i x ) = (/) ) -> ( ( cls ` J ) ` S ) C_ ( X \ x ) ) |
| 42 |
41
|
sseld |
|- ( ( ( ( J e. Top /\ S C_ X ) /\ x e. J ) /\ ( S i^i x ) = (/) ) -> ( P e. ( ( cls ` J ) ` S ) -> P e. ( X \ x ) ) ) |
| 43 |
|
eldifn |
|- ( P e. ( X \ x ) -> -. P e. x ) |
| 44 |
42 43
|
syl6 |
|- ( ( ( ( J e. Top /\ S C_ X ) /\ x e. J ) /\ ( S i^i x ) = (/) ) -> ( P e. ( ( cls ` J ) ` S ) -> -. P e. x ) ) |
| 45 |
44
|
con2d |
|- ( ( ( ( J e. Top /\ S C_ X ) /\ x e. J ) /\ ( S i^i x ) = (/) ) -> ( P e. x -> -. P e. ( ( cls ` J ) ` S ) ) ) |
| 46 |
34 45
|
sylan2br |
|- ( ( ( ( J e. Top /\ S C_ X ) /\ x e. J ) /\ -. ( x i^i S ) =/= (/) ) -> ( P e. x -> -. P e. ( ( cls ` J ) ` S ) ) ) |
| 47 |
46
|
exp31 |
|- ( ( J e. Top /\ S C_ X ) -> ( x e. J -> ( -. ( x i^i S ) =/= (/) -> ( P e. x -> -. P e. ( ( cls ` J ) ` S ) ) ) ) ) |
| 48 |
47
|
com34 |
|- ( ( J e. Top /\ S C_ X ) -> ( x e. J -> ( P e. x -> ( -. ( x i^i S ) =/= (/) -> -. P e. ( ( cls ` J ) ` S ) ) ) ) ) |
| 49 |
48
|
imp4a |
|- ( ( J e. Top /\ S C_ X ) -> ( x e. J -> ( ( P e. x /\ -. ( x i^i S ) =/= (/) ) -> -. P e. ( ( cls ` J ) ` S ) ) ) ) |
| 50 |
49
|
rexlimdv |
|- ( ( J e. Top /\ S C_ X ) -> ( E. x e. J ( P e. x /\ -. ( x i^i S ) =/= (/) ) -> -. P e. ( ( cls ` J ) ` S ) ) ) |
| 51 |
50
|
imp |
|- ( ( ( J e. Top /\ S C_ X ) /\ E. x e. J ( P e. x /\ -. ( x i^i S ) =/= (/) ) ) -> -. P e. ( ( cls ` J ) ` S ) ) |
| 52 |
51
|
3adantl3 |
|- ( ( ( J e. Top /\ S C_ X /\ P e. X ) /\ E. x e. J ( P e. x /\ -. ( x i^i S ) =/= (/) ) ) -> -. P e. ( ( cls ` J ) ` S ) ) |
| 53 |
29 52
|
impbida |
|- ( ( J e. Top /\ S C_ X /\ P e. X ) -> ( -. P e. ( ( cls ` J ) ` S ) <-> E. x e. J ( P e. x /\ -. ( x i^i S ) =/= (/) ) ) ) |
| 54 |
|
rexanali |
|- ( E. x e. J ( P e. x /\ -. ( x i^i S ) =/= (/) ) <-> -. A. x e. J ( P e. x -> ( x i^i S ) =/= (/) ) ) |
| 55 |
53 54
|
bitrdi |
|- ( ( J e. Top /\ S C_ X /\ P e. X ) -> ( -. P e. ( ( cls ` J ) ` S ) <-> -. A. x e. J ( P e. x -> ( x i^i S ) =/= (/) ) ) ) |
| 56 |
55
|
con4bid |
|- ( ( J e. Top /\ S C_ X /\ P e. X ) -> ( P e. ( ( cls ` J ) ` S ) <-> A. x e. J ( P e. x -> ( x i^i S ) =/= (/) ) ) ) |