Metamath Proof Explorer


Theorem elcncf1ii

Description: Membership in the set of continuous complex functions from A to B . (Contributed by Paul Chapman, 26-Nov-2007)

Ref Expression
Hypotheses elcncf1i.1
|- F : A --> B
elcncf1i.2
|- ( ( x e. A /\ y e. RR+ ) -> Z e. RR+ )
elcncf1i.3
|- ( ( ( x e. A /\ w e. A ) /\ y e. RR+ ) -> ( ( abs ` ( x - w ) ) < Z -> ( abs ` ( ( F ` x ) - ( F ` w ) ) ) < y ) )
Assertion elcncf1ii
|- ( ( A C_ CC /\ B C_ CC ) -> F e. ( A -cn-> B ) )

Proof

Step Hyp Ref Expression
1 elcncf1i.1
 |-  F : A --> B
2 elcncf1i.2
 |-  ( ( x e. A /\ y e. RR+ ) -> Z e. RR+ )
3 elcncf1i.3
 |-  ( ( ( x e. A /\ w e. A ) /\ y e. RR+ ) -> ( ( abs ` ( x - w ) ) < Z -> ( abs ` ( ( F ` x ) - ( F ` w ) ) ) < y ) )
4 1 a1i
 |-  ( T. -> F : A --> B )
5 2 a1i
 |-  ( T. -> ( ( x e. A /\ y e. RR+ ) -> Z e. RR+ ) )
6 3 a1i
 |-  ( T. -> ( ( ( x e. A /\ w e. A ) /\ y e. RR+ ) -> ( ( abs ` ( x - w ) ) < Z -> ( abs ` ( ( F ` x ) - ( F ` w ) ) ) < y ) ) )
7 4 5 6 elcncf1di
 |-  ( T. -> ( ( A C_ CC /\ B C_ CC ) -> F e. ( A -cn-> B ) ) )
8 7 mptru
 |-  ( ( A C_ CC /\ B C_ CC ) -> F e. ( A -cn-> B ) )