Step |
Hyp |
Ref |
Expression |
1 |
|
fveq1 |
|- ( t = T -> ( t ` w ) = ( T ` w ) ) |
2 |
|
fveq1 |
|- ( t = T -> ( t ` x ) = ( T ` x ) ) |
3 |
1 2
|
oveq12d |
|- ( t = T -> ( ( t ` w ) - ( t ` x ) ) = ( ( T ` w ) - ( T ` x ) ) ) |
4 |
3
|
fveq2d |
|- ( t = T -> ( abs ` ( ( t ` w ) - ( t ` x ) ) ) = ( abs ` ( ( T ` w ) - ( T ` x ) ) ) ) |
5 |
4
|
breq1d |
|- ( t = T -> ( ( abs ` ( ( t ` w ) - ( t ` x ) ) ) < y <-> ( abs ` ( ( T ` w ) - ( T ` x ) ) ) < y ) ) |
6 |
5
|
imbi2d |
|- ( t = T -> ( ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( t ` w ) - ( t ` x ) ) ) < y ) <-> ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( T ` w ) - ( T ` x ) ) ) < y ) ) ) |
7 |
6
|
rexralbidv |
|- ( t = T -> ( E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( t ` w ) - ( t ` x ) ) ) < y ) <-> E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( T ` w ) - ( T ` x ) ) ) < y ) ) ) |
8 |
7
|
2ralbidv |
|- ( t = T -> ( A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( t ` w ) - ( t ` x ) ) ) < y ) <-> A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( T ` w ) - ( T ` x ) ) ) < y ) ) ) |
9 |
|
df-cnfn |
|- ContFn = { t e. ( CC ^m ~H ) | A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( t ` w ) - ( t ` x ) ) ) < y ) } |
10 |
8 9
|
elrab2 |
|- ( T e. ContFn <-> ( T e. ( CC ^m ~H ) /\ A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( T ` w ) - ( T ` x ) ) ) < y ) ) ) |
11 |
|
cnex |
|- CC e. _V |
12 |
|
ax-hilex |
|- ~H e. _V |
13 |
11 12
|
elmap |
|- ( T e. ( CC ^m ~H ) <-> T : ~H --> CC ) |
14 |
13
|
anbi1i |
|- ( ( T e. ( CC ^m ~H ) /\ A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( T ` w ) - ( T ` x ) ) ) < y ) ) <-> ( T : ~H --> CC /\ A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( T ` w ) - ( T ` x ) ) ) < y ) ) ) |
15 |
10 14
|
bitri |
|- ( T e. ContFn <-> ( T : ~H --> CC /\ A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( T ` w ) - ( T ` x ) ) ) < y ) ) ) |