Metamath Proof Explorer


Theorem elcntr

Description: Elementhood in the center of a magma. (Contributed by SN, 21-Mar-2025)

Ref Expression
Hypotheses elcntr.b
|- B = ( Base ` M )
elcntr.p
|- .+ = ( +g ` M )
elcntr.z
|- Z = ( Cntr ` M )
Assertion elcntr
|- ( A e. Z <-> ( A e. B /\ A. y e. B ( A .+ y ) = ( y .+ A ) ) )

Proof

Step Hyp Ref Expression
1 elcntr.b
 |-  B = ( Base ` M )
2 elcntr.p
 |-  .+ = ( +g ` M )
3 elcntr.z
 |-  Z = ( Cntr ` M )
4 eqid
 |-  ( Cntz ` M ) = ( Cntz ` M )
5 1 4 cntrval
 |-  ( ( Cntz ` M ) ` B ) = ( Cntr ` M )
6 3 5 eqtr4i
 |-  Z = ( ( Cntz ` M ) ` B )
7 6 eleq2i
 |-  ( A e. Z <-> A e. ( ( Cntz ` M ) ` B ) )
8 ssid
 |-  B C_ B
9 1 2 4 elcntz
 |-  ( B C_ B -> ( A e. ( ( Cntz ` M ) ` B ) <-> ( A e. B /\ A. y e. B ( A .+ y ) = ( y .+ A ) ) ) )
10 8 9 ax-mp
 |-  ( A e. ( ( Cntz ` M ) ` B ) <-> ( A e. B /\ A. y e. B ( A .+ y ) = ( y .+ A ) ) )
11 7 10 bitri
 |-  ( A e. Z <-> ( A e. B /\ A. y e. B ( A .+ y ) = ( y .+ A ) ) )