| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elcntr.b |
|- B = ( Base ` M ) |
| 2 |
|
elcntr.p |
|- .+ = ( +g ` M ) |
| 3 |
|
elcntr.z |
|- Z = ( Cntr ` M ) |
| 4 |
|
eqid |
|- ( Cntz ` M ) = ( Cntz ` M ) |
| 5 |
1 4
|
cntrval |
|- ( ( Cntz ` M ) ` B ) = ( Cntr ` M ) |
| 6 |
3 5
|
eqtr4i |
|- Z = ( ( Cntz ` M ) ` B ) |
| 7 |
6
|
eleq2i |
|- ( A e. Z <-> A e. ( ( Cntz ` M ) ` B ) ) |
| 8 |
|
ssid |
|- B C_ B |
| 9 |
1 2 4
|
elcntz |
|- ( B C_ B -> ( A e. ( ( Cntz ` M ) ` B ) <-> ( A e. B /\ A. y e. B ( A .+ y ) = ( y .+ A ) ) ) ) |
| 10 |
8 9
|
ax-mp |
|- ( A e. ( ( Cntz ` M ) ` B ) <-> ( A e. B /\ A. y e. B ( A .+ y ) = ( y .+ A ) ) ) |
| 11 |
7 10
|
bitri |
|- ( A e. Z <-> ( A e. B /\ A. y e. B ( A .+ y ) = ( y .+ A ) ) ) |