Description: Membership in a converse relation. Equation 5 of Suppes p. 62. (Contributed by NM, 24-Mar-1998)
Ref | Expression | ||
---|---|---|---|
Assertion | elcnv | |- ( A e. `' R <-> E. x E. y ( A = <. x , y >. /\ y R x ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cnv | |- `' R = { <. x , y >. | y R x } |
|
2 | 1 | eleq2i | |- ( A e. `' R <-> A e. { <. x , y >. | y R x } ) |
3 | elopab | |- ( A e. { <. x , y >. | y R x } <-> E. x E. y ( A = <. x , y >. /\ y R x ) ) |
|
4 | 2 3 | bitri | |- ( A e. `' R <-> E. x E. y ( A = <. x , y >. /\ y R x ) ) |