Description: Membership in a converse relation. Equation 5 of Suppes p. 62. (Contributed by NM, 11-Aug-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | elcnv2 | |- ( A e. `' R <-> E. x E. y ( A = <. x , y >. /\ <. y , x >. e. R ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elcnv | |- ( A e. `' R <-> E. x E. y ( A = <. x , y >. /\ y R x ) ) |
|
2 | df-br | |- ( y R x <-> <. y , x >. e. R ) |
|
3 | 2 | anbi2i | |- ( ( A = <. x , y >. /\ y R x ) <-> ( A = <. x , y >. /\ <. y , x >. e. R ) ) |
4 | 3 | 2exbii | |- ( E. x E. y ( A = <. x , y >. /\ y R x ) <-> E. x E. y ( A = <. x , y >. /\ <. y , x >. e. R ) ) |
5 | 1 4 | bitri | |- ( A e. `' R <-> E. x E. y ( A = <. x , y >. /\ <. y , x >. e. R ) ) |