Metamath Proof Explorer


Theorem elcnv2

Description: Membership in a converse relation. Equation 5 of Suppes p. 62. (Contributed by NM, 11-Aug-2004)

Ref Expression
Assertion elcnv2
|- ( A e. `' R <-> E. x E. y ( A = <. x , y >. /\ <. y , x >. e. R ) )

Proof

Step Hyp Ref Expression
1 elcnv
 |-  ( A e. `' R <-> E. x E. y ( A = <. x , y >. /\ y R x ) )
2 df-br
 |-  ( y R x <-> <. y , x >. e. R )
3 2 anbi2i
 |-  ( ( A = <. x , y >. /\ y R x ) <-> ( A = <. x , y >. /\ <. y , x >. e. R ) )
4 3 2exbii
 |-  ( E. x E. y ( A = <. x , y >. /\ y R x ) <-> E. x E. y ( A = <. x , y >. /\ <. y , x >. e. R ) )
5 1 4 bitri
 |-  ( A e. `' R <-> E. x E. y ( A = <. x , y >. /\ <. y , x >. e. R ) )