Description: Membership in a converse relation. Equation 5 of Suppes p. 62. (Contributed by NM, 11-Aug-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elcnv2 | |- ( A e. `' R <-> E. x E. y ( A = <. x , y >. /\ <. y , x >. e. R ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elcnv | |- ( A e. `' R <-> E. x E. y ( A = <. x , y >. /\ y R x ) ) | |
| 2 | df-br | |- ( y R x <-> <. y , x >. e. R ) | |
| 3 | 2 | anbi2i | |- ( ( A = <. x , y >. /\ y R x ) <-> ( A = <. x , y >. /\ <. y , x >. e. R ) ) | 
| 4 | 3 | 2exbii | |- ( E. x E. y ( A = <. x , y >. /\ y R x ) <-> E. x E. y ( A = <. x , y >. /\ <. y , x >. e. R ) ) | 
| 5 | 1 4 | bitri | |- ( A e. `' R <-> E. x E. y ( A = <. x , y >. /\ <. y , x >. e. R ) ) |