| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dfcnvrefrels3 | 
							 |-  CnvRefRels = { r e. Rels | A. x e. dom r A. y e. ran r ( x r y -> x = y ) } | 
						
						
							| 2 | 
							
								
							 | 
							dmeq | 
							 |-  ( r = R -> dom r = dom R )  | 
						
						
							| 3 | 
							
								
							 | 
							rneq | 
							 |-  ( r = R -> ran r = ran R )  | 
						
						
							| 4 | 
							
								
							 | 
							breq | 
							 |-  ( r = R -> ( x r y <-> x R y ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							imbi1d | 
							 |-  ( r = R -> ( ( x r y -> x = y ) <-> ( x R y -> x = y ) ) )  | 
						
						
							| 6 | 
							
								3 5
							 | 
							raleqbidv | 
							 |-  ( r = R -> ( A. y e. ran r ( x r y -> x = y ) <-> A. y e. ran R ( x R y -> x = y ) ) )  | 
						
						
							| 7 | 
							
								2 6
							 | 
							raleqbidv | 
							 |-  ( r = R -> ( A. x e. dom r A. y e. ran r ( x r y -> x = y ) <-> A. x e. dom R A. y e. ran R ( x R y -> x = y ) ) )  | 
						
						
							| 8 | 
							
								1 7
							 | 
							rabeqel | 
							 |-  ( R e. CnvRefRels <-> ( A. x e. dom R A. y e. ran R ( x R y -> x = y ) /\ R e. Rels ) )  |