Description: If a class is in the difference of two classes, it is also in the minuend. One-way deduction form of eldif . (Contributed by David Moews, 1-May-2017)
Ref | Expression | ||
---|---|---|---|
Hypothesis | eldifad.1 | |- ( ph -> A e. ( B \ C ) ) |
|
Assertion | eldifad | |- ( ph -> A e. B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifad.1 | |- ( ph -> A e. ( B \ C ) ) |
|
2 | eldif | |- ( A e. ( B \ C ) <-> ( A e. B /\ -. A e. C ) ) |
|
3 | 1 2 | sylib | |- ( ph -> ( A e. B /\ -. A e. C ) ) |
4 | 3 | simpld | |- ( ph -> A e. B ) |