Metamath Proof Explorer


Theorem eldifad

Description: If a class is in the difference of two classes, it is also in the minuend. One-way deduction form of eldif . (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypothesis eldifad.1
|- ( ph -> A e. ( B \ C ) )
Assertion eldifad
|- ( ph -> A e. B )

Proof

Step Hyp Ref Expression
1 eldifad.1
 |-  ( ph -> A e. ( B \ C ) )
2 eldif
 |-  ( A e. ( B \ C ) <-> ( A e. B /\ -. A e. C ) )
3 1 2 sylib
 |-  ( ph -> ( A e. B /\ -. A e. C ) )
4 3 simpld
 |-  ( ph -> A e. B )