Description: If a class is in one class and not another, it is also in their difference. One-way deduction form of eldif . (Contributed by David Moews, 1-May-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eldifd.1 | |- ( ph -> A e. B ) |
|
| eldifd.2 | |- ( ph -> -. A e. C ) |
||
| Assertion | eldifd | |- ( ph -> A e. ( B \ C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifd.1 | |- ( ph -> A e. B ) |
|
| 2 | eldifd.2 | |- ( ph -> -. A e. C ) |
|
| 3 | eldif | |- ( A e. ( B \ C ) <-> ( A e. B /\ -. A e. C ) ) |
|
| 4 | 1 2 3 | sylanbrc | |- ( ph -> A e. ( B \ C ) ) |