Description: An element of a difference set is an element of the difference with a singleton. (Contributed by AV, 2-Jan-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | eldifeldifsn | |- ( ( X e. A /\ Y e. ( B \ A ) ) -> Y e. ( B \ { X } ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssi | |- ( X e. A -> { X } C_ A ) |
|
2 | 1 | sscond | |- ( X e. A -> ( B \ A ) C_ ( B \ { X } ) ) |
3 | 2 | sselda | |- ( ( X e. A /\ Y e. ( B \ A ) ) -> Y e. ( B \ { X } ) ) |