Description: Implication of membership in a class difference. (Contributed by NM, 3-May-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eldifn | |- ( A e. ( B \ C ) -> -. A e. C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif | |- ( A e. ( B \ C ) <-> ( A e. B /\ -. A e. C ) ) |
|
| 2 | 1 | simprbi | |- ( A e. ( B \ C ) -> -. A e. C ) |