Description: Membership in a set with an element removed. (Contributed by NM, 10-Oct-2007)
Ref | Expression | ||
---|---|---|---|
Assertion | eldifsn | |- ( A e. ( B \ { C } ) <-> ( A e. B /\ A =/= C ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif | |- ( A e. ( B \ { C } ) <-> ( A e. B /\ -. A e. { C } ) ) |
|
2 | elsng | |- ( A e. B -> ( A e. { C } <-> A = C ) ) |
|
3 | 2 | necon3bbid | |- ( A e. B -> ( -. A e. { C } <-> A =/= C ) ) |
4 | 3 | pm5.32i | |- ( ( A e. B /\ -. A e. { C } ) <-> ( A e. B /\ A =/= C ) ) |
5 | 1 4 | bitri | |- ( A e. ( B \ { C } ) <-> ( A e. B /\ A =/= C ) ) |