Metamath Proof Explorer


Theorem eldifsn

Description: Membership in a set with an element removed. (Contributed by NM, 10-Oct-2007)

Ref Expression
Assertion eldifsn
|- ( A e. ( B \ { C } ) <-> ( A e. B /\ A =/= C ) )

Proof

Step Hyp Ref Expression
1 eldif
 |-  ( A e. ( B \ { C } ) <-> ( A e. B /\ -. A e. { C } ) )
2 elsng
 |-  ( A e. B -> ( A e. { C } <-> A = C ) )
3 2 necon3bbid
 |-  ( A e. B -> ( -. A e. { C } <-> A =/= C ) )
4 3 pm5.32i
 |-  ( ( A e. B /\ -. A e. { C } ) <-> ( A e. B /\ A =/= C ) )
5 1 4 bitri
 |-  ( A e. ( B \ { C } ) <-> ( A e. B /\ A =/= C ) )