Description: Membership in a set with an element removed : deduction version. (Contributed by Thierry Arnoux, 4-May-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | eldifsnd.1 | |- ( ph -> A e. B ) |
|
eldifsnd.2 | |- ( ph -> A =/= C ) |
||
Assertion | eldifsnd | |- ( ph -> A e. ( B \ { C } ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifsnd.1 | |- ( ph -> A e. B ) |
|
2 | eldifsnd.2 | |- ( ph -> A =/= C ) |
|
3 | eldifsn | |- ( A e. ( B \ { C } ) <-> ( A e. B /\ A =/= C ) ) |
|
4 | 1 2 3 | sylanbrc | |- ( ph -> A e. ( B \ { C } ) ) |