Description: Membership in a set with an element removed : deduction version. (Contributed by Thierry Arnoux, 4-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eldifsnd.1 | |- ( ph -> A e. B ) |
|
| eldifsnd.2 | |- ( ph -> A =/= C ) |
||
| Assertion | eldifsnd | |- ( ph -> A e. ( B \ { C } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifsnd.1 | |- ( ph -> A e. B ) |
|
| 2 | eldifsnd.2 | |- ( ph -> A =/= C ) |
|
| 3 | eldifsn | |- ( A e. ( B \ { C } ) <-> ( A e. B /\ A =/= C ) ) |
|
| 4 | 1 2 3 | sylanbrc | |- ( ph -> A e. ( B \ { C } ) ) |