Metamath Proof Explorer


Theorem eldifsnd

Description: Membership in a set with an element removed : deduction version. (Contributed by Thierry Arnoux, 4-May-2025)

Ref Expression
Hypotheses eldifsnd.1
|- ( ph -> A e. B )
eldifsnd.2
|- ( ph -> A =/= C )
Assertion eldifsnd
|- ( ph -> A e. ( B \ { C } ) )

Proof

Step Hyp Ref Expression
1 eldifsnd.1
 |-  ( ph -> A e. B )
2 eldifsnd.2
 |-  ( ph -> A =/= C )
3 eldifsn
 |-  ( A e. ( B \ { C } ) <-> ( A e. B /\ A =/= C ) )
4 1 2 3 sylanbrc
 |-  ( ph -> A e. ( B \ { C } ) )