Description: An element of a difference with a singleton is not equal to the element of that singleton. Note that ( -. A e. { C } -> -. A = C ) need not hold if A is a proper class. (Contributed by BJ, 18-Mar-2023) (Proof shortened by Steven Nguyen, 1-Jun-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | eldifsnneq | |- ( A e. ( B \ { C } ) -> -. A = C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifsni | |- ( A e. ( B \ { C } ) -> A =/= C ) |
|
2 | 1 | neneqd | |- ( A e. ( B \ { C } ) -> -. A = C ) |