Metamath Proof Explorer


Theorem eldifvsn

Description: A set is an element of the universal class excluding a singleton iff it is not the singleton element. (Contributed by AV, 7-Apr-2019)

Ref Expression
Assertion eldifvsn
|- ( A e. V -> ( A e. ( _V \ { B } ) <-> A =/= B ) )

Proof

Step Hyp Ref Expression
1 eldifsn
 |-  ( A e. ( _V \ { B } ) <-> ( A e. _V /\ A =/= B ) )
2 elex
 |-  ( A e. V -> A e. _V )
3 2 biantrurd
 |-  ( A e. V -> ( A =/= B <-> ( A e. _V /\ A =/= B ) ) )
4 1 3 bitr4id
 |-  ( A e. V -> ( A e. ( _V \ { B } ) <-> A =/= B ) )