Description: A set is an element of the universal class excluding a singleton iff it is not the singleton element. (Contributed by AV, 7-Apr-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | eldifvsn | |- ( A e. V -> ( A e. ( _V \ { B } ) <-> A =/= B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifsn | |- ( A e. ( _V \ { B } ) <-> ( A e. _V /\ A =/= B ) ) |
|
2 | elex | |- ( A e. V -> A e. _V ) |
|
3 | 2 | biantrurd | |- ( A e. V -> ( A =/= B <-> ( A e. _V /\ A =/= B ) ) ) |
4 | 1 3 | bitr4id | |- ( A e. V -> ( A e. ( _V \ { B } ) <-> A =/= B ) ) |