| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-eldisj |
|- ( ElDisj A <-> Disj ( `' _E |` A ) ) |
| 2 |
|
disjlem19 |
|- ( B e. V -> ( Disj ( `' _E |` A ) -> ( ( u e. dom ( `' _E |` A ) /\ B e. [ u ] ( `' _E |` A ) ) -> [ u ] ( `' _E |` A ) = [ B ] ,~ ( `' _E |` A ) ) ) ) |
| 3 |
1 2
|
biimtrid |
|- ( B e. V -> ( ElDisj A -> ( ( u e. dom ( `' _E |` A ) /\ B e. [ u ] ( `' _E |` A ) ) -> [ u ] ( `' _E |` A ) = [ B ] ,~ ( `' _E |` A ) ) ) ) |
| 4 |
3
|
imp |
|- ( ( B e. V /\ ElDisj A ) -> ( ( u e. dom ( `' _E |` A ) /\ B e. [ u ] ( `' _E |` A ) ) -> [ u ] ( `' _E |` A ) = [ B ] ,~ ( `' _E |` A ) ) ) |
| 5 |
4
|
expdimp |
|- ( ( ( B e. V /\ ElDisj A ) /\ u e. dom ( `' _E |` A ) ) -> ( B e. [ u ] ( `' _E |` A ) -> [ u ] ( `' _E |` A ) = [ B ] ,~ ( `' _E |` A ) ) ) |
| 6 |
|
eccnvepres3 |
|- ( u e. dom ( `' _E |` A ) -> [ u ] ( `' _E |` A ) = u ) |
| 7 |
6
|
eleq2d |
|- ( u e. dom ( `' _E |` A ) -> ( B e. [ u ] ( `' _E |` A ) <-> B e. u ) ) |
| 8 |
6
|
eqeq1d |
|- ( u e. dom ( `' _E |` A ) -> ( [ u ] ( `' _E |` A ) = [ B ] ,~ ( `' _E |` A ) <-> u = [ B ] ,~ ( `' _E |` A ) ) ) |
| 9 |
7 8
|
imbi12d |
|- ( u e. dom ( `' _E |` A ) -> ( ( B e. [ u ] ( `' _E |` A ) -> [ u ] ( `' _E |` A ) = [ B ] ,~ ( `' _E |` A ) ) <-> ( B e. u -> u = [ B ] ,~ ( `' _E |` A ) ) ) ) |
| 10 |
9
|
adantl |
|- ( ( ( B e. V /\ ElDisj A ) /\ u e. dom ( `' _E |` A ) ) -> ( ( B e. [ u ] ( `' _E |` A ) -> [ u ] ( `' _E |` A ) = [ B ] ,~ ( `' _E |` A ) ) <-> ( B e. u -> u = [ B ] ,~ ( `' _E |` A ) ) ) ) |
| 11 |
5 10
|
mpbid |
|- ( ( ( B e. V /\ ElDisj A ) /\ u e. dom ( `' _E |` A ) ) -> ( B e. u -> u = [ B ] ,~ ( `' _E |` A ) ) ) |
| 12 |
|
df-coels |
|- ~ A = ,~ ( `' _E |` A ) |
| 13 |
12
|
eceq2i |
|- [ B ] ~ A = [ B ] ,~ ( `' _E |` A ) |
| 14 |
13
|
eqeq2i |
|- ( u = [ B ] ~ A <-> u = [ B ] ,~ ( `' _E |` A ) ) |
| 15 |
11 14
|
imbitrrdi |
|- ( ( ( B e. V /\ ElDisj A ) /\ u e. dom ( `' _E |` A ) ) -> ( B e. u -> u = [ B ] ~ A ) ) |
| 16 |
15
|
expimpd |
|- ( ( B e. V /\ ElDisj A ) -> ( ( u e. dom ( `' _E |` A ) /\ B e. u ) -> u = [ B ] ~ A ) ) |
| 17 |
16
|
ex |
|- ( B e. V -> ( ElDisj A -> ( ( u e. dom ( `' _E |` A ) /\ B e. u ) -> u = [ B ] ~ A ) ) ) |