Step |
Hyp |
Ref |
Expression |
1 |
|
df-eldisj |
|- ( ElDisj A <-> Disj ( `' _E |` A ) ) |
2 |
|
disjlem19 |
|- ( B e. V -> ( Disj ( `' _E |` A ) -> ( ( u e. dom ( `' _E |` A ) /\ B e. [ u ] ( `' _E |` A ) ) -> [ u ] ( `' _E |` A ) = [ B ] ,~ ( `' _E |` A ) ) ) ) |
3 |
1 2
|
biimtrid |
|- ( B e. V -> ( ElDisj A -> ( ( u e. dom ( `' _E |` A ) /\ B e. [ u ] ( `' _E |` A ) ) -> [ u ] ( `' _E |` A ) = [ B ] ,~ ( `' _E |` A ) ) ) ) |
4 |
3
|
imp |
|- ( ( B e. V /\ ElDisj A ) -> ( ( u e. dom ( `' _E |` A ) /\ B e. [ u ] ( `' _E |` A ) ) -> [ u ] ( `' _E |` A ) = [ B ] ,~ ( `' _E |` A ) ) ) |
5 |
4
|
expdimp |
|- ( ( ( B e. V /\ ElDisj A ) /\ u e. dom ( `' _E |` A ) ) -> ( B e. [ u ] ( `' _E |` A ) -> [ u ] ( `' _E |` A ) = [ B ] ,~ ( `' _E |` A ) ) ) |
6 |
|
eccnvepres3 |
|- ( u e. dom ( `' _E |` A ) -> [ u ] ( `' _E |` A ) = u ) |
7 |
6
|
eleq2d |
|- ( u e. dom ( `' _E |` A ) -> ( B e. [ u ] ( `' _E |` A ) <-> B e. u ) ) |
8 |
6
|
eqeq1d |
|- ( u e. dom ( `' _E |` A ) -> ( [ u ] ( `' _E |` A ) = [ B ] ,~ ( `' _E |` A ) <-> u = [ B ] ,~ ( `' _E |` A ) ) ) |
9 |
7 8
|
imbi12d |
|- ( u e. dom ( `' _E |` A ) -> ( ( B e. [ u ] ( `' _E |` A ) -> [ u ] ( `' _E |` A ) = [ B ] ,~ ( `' _E |` A ) ) <-> ( B e. u -> u = [ B ] ,~ ( `' _E |` A ) ) ) ) |
10 |
9
|
adantl |
|- ( ( ( B e. V /\ ElDisj A ) /\ u e. dom ( `' _E |` A ) ) -> ( ( B e. [ u ] ( `' _E |` A ) -> [ u ] ( `' _E |` A ) = [ B ] ,~ ( `' _E |` A ) ) <-> ( B e. u -> u = [ B ] ,~ ( `' _E |` A ) ) ) ) |
11 |
5 10
|
mpbid |
|- ( ( ( B e. V /\ ElDisj A ) /\ u e. dom ( `' _E |` A ) ) -> ( B e. u -> u = [ B ] ,~ ( `' _E |` A ) ) ) |
12 |
|
df-coels |
|- ~ A = ,~ ( `' _E |` A ) |
13 |
12
|
eceq2i |
|- [ B ] ~ A = [ B ] ,~ ( `' _E |` A ) |
14 |
13
|
eqeq2i |
|- ( u = [ B ] ~ A <-> u = [ B ] ,~ ( `' _E |` A ) ) |
15 |
11 14
|
imbitrrdi |
|- ( ( ( B e. V /\ ElDisj A ) /\ u e. dom ( `' _E |` A ) ) -> ( B e. u -> u = [ B ] ~ A ) ) |
16 |
15
|
expimpd |
|- ( ( B e. V /\ ElDisj A ) -> ( ( u e. dom ( `' _E |` A ) /\ B e. u ) -> u = [ B ] ~ A ) ) |
17 |
16
|
ex |
|- ( B e. V -> ( ElDisj A -> ( ( u e. dom ( `' _E |` A ) /\ B e. u ) -> u = [ B ] ~ A ) ) ) |