Metamath Proof Explorer


Theorem eldisjn0elb

Description: Two forms of disjoint elements when the empty set is not an element of the class. (Contributed by Peter Mazsa, 31-Dec-2024)

Ref Expression
Assertion eldisjn0elb
|- ( ( ElDisj A /\ -. (/) e. A ) <-> ( Disj ( `' _E |` A ) /\ ( dom ( `' _E |` A ) /. ( `' _E |` A ) ) = A ) )

Proof

Step Hyp Ref Expression
1 df-eldisj
 |-  ( ElDisj A <-> Disj ( `' _E |` A ) )
2 n0el3
 |-  ( -. (/) e. A <-> ( dom ( `' _E |` A ) /. ( `' _E |` A ) ) = A )
3 1 2 anbi12i
 |-  ( ( ElDisj A /\ -. (/) e. A ) <-> ( Disj ( `' _E |` A ) /\ ( dom ( `' _E |` A ) /. ( `' _E |` A ) ) = A ) )